Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Genet Med ; 23(8): 1465-1473, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833410

RESUMO

PURPOSE: We characterize the clinical and molecular phenotypes of six unrelated individuals with intellectual disability and autism spectrum disorder who carry heterozygous missense variants of the PRKAR1B gene, which encodes the R1ß subunit of the cyclic AMP-dependent protein kinase A (PKA). METHODS: Variants of PRKAR1B were identified by single- or trio-exome analysis. We contacted the families and physicians of the six individuals to collect phenotypic information, performed in vitro analyses of the identified PRKAR1B-variants, and investigated PRKAR1B expression during embryonic development. RESULTS: Recent studies of large patient cohorts with neurodevelopmental disorders found significant enrichment of de novo missense variants in PRKAR1B. In our cohort, de novo origin of the PRKAR1B variants could be confirmed in five of six individuals, and four carried the same heterozygous de novo variant c.1003C>T (p.Arg335Trp; NM_001164760). Global developmental delay, autism spectrum disorder, and apraxia/dyspraxia have been reported in all six, and reduced pain sensitivity was found in three individuals carrying the c.1003C>T variant. PRKAR1B expression in the brain was demonstrated during human embryonal development. Additionally, in vitro analyses revealed altered basal PKA activity in cells transfected with variant-harboring PRKAR1B expression constructs. CONCLUSION: Our study provides strong evidence for a PRKAR1B-related neurodevelopmental disorder.


Assuntos
Apraxias , Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/genética , Subunidade RIbeta da Proteína Quinase Dependente de AMP Cíclico , Feminino , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Dor , Gravidez
2.
Am J Med Genet A ; 185(4): 1076-1080, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33438828

RESUMO

De novo heterozygous variants in the brain-specific transcription factor Neuronal Differentiation Factor 2 (NEUROD2) have been recently associated with early-onset epileptic encephalopathy and developmental delay. Here, we report an adolescent with developmental delay without seizures who was found to have a novel de novo heterozygous NEUROD2 missense variant, p.(Leu163Pro). Functional testing using an in vivo assay of neuronal differentiation in Xenopus laevis tadpoles demonstrated that the patient variant of NEUROD2 displays minimal protein activity, strongly suggesting a loss of function effect. In contrast, a second rare NEUROD2 variant, p.(Ala235Thr), identified in an adolescent with developmental delay but lacking parental studies for inheritance, showed normal in vivo NEUROD2 activity. We thus provide clinical, genetic, and functional evidence that NEUROD2 variants can lead to developmental delay without accompanying early-onset seizures, and demonstrate how functional testing can complement genetic data when determining variant pathogenicity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/patologia , Deficiências do Desenvolvimento/genética , Neuropeptídeos/genética , Adolescente , Animais , Encéfalo/diagnóstico por imagem , Criança , Deficiências do Desenvolvimento/patologia , Modelos Animais de Doenças , Feminino , Heterozigoto , Humanos , Larva/genética , Masculino , Fenótipo , Convulsões/genética , Convulsões/patologia , Xenopus laevis/genética
3.
Genet Med ; 22(3): 490-499, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31607746

RESUMO

PURPOSE: We investigated the value of transcriptome sequencing (RNAseq) in ascertaining the consequence of DNA variants on RNA transcripts to improve the diagnostic rate from exome or genome sequencing for undiagnosed Mendelian diseases spanning a wide spectrum of clinical indications. METHODS: From 234 subjects referred to the Undiagnosed Diseases Network, University of California-Los Angeles clinical site between July 2014 and August 2018, 113 were enrolled for high likelihood of having rare undiagnosed, suspected genetic conditions despite thorough prior clinical evaluation. Exome or genome sequencing and RNAseq were performed, and RNAseq data was integrated with genome sequencing data for DNA variant interpretation genome-wide. RESULTS: The molecular diagnostic rate by exome or genome sequencing was 31%. Integration of RNAseq with genome sequencing resulted in an additional seven cases with clear diagnosis of a known genetic disease. Thus, the overall molecular diagnostic rate was 38%, and 18% of all genetic diagnoses returned required RNAseq to determine variant causality. CONCLUSION: In this rare disease cohort with a wide spectrum of undiagnosed, suspected genetic conditions, RNAseq analysis increased the molecular diagnostic rate above that possible with genome sequencing analysis alone even without availability of the most appropriate tissue type to assess.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Patologia Molecular , Doenças Raras/diagnóstico , Transcriptoma/genética , Exoma/genética , Doenças Genéticas Inatas/genética , Testes Genéticos/normas , Humanos , Mutação/genética , RNA-Seq/normas , Doenças Raras/genética , Análise de Sequência de DNA/normas , Sequenciamento do Exoma/normas , Sequenciamento Completo do Genoma/normas
4.
Mol Genet Genomic Med ; 7(2): e00501, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30447054

RESUMO

BACKGROUND: The cohesin complex is a multi-subunit protein complex which regulates sister chromatid cohesion and separation during cellular division. In addition, this evolutionarily conserved protein complex plays an integral role in DNA replication, DNA repair, and the regulation of transcription. The core complex is composed of four subunits: RAD21, SMC1A, SMC3, and STAG1/2. Mutations in these proteins have been implicated in human developmental disorders collectively termed "cohesinopathies." METHODS: Using clinical exome sequencing, we have previously identified three female cases with heterozygous STAG2 mutations and overlapping syndromic phenotypes. Subsequently, a familial missense variant was identified in five male family members. RESULTS: We now present the case of a 4-year-old male with developmental delay, failure to thrive, short stature, and polydactyly with a likely pathogenic STAG2 de novo missense hemizygous variant, c.3027A>T, p.Lys1009Asn. Furthermore, we compare the phenotypes of the four previously reported STAG2 variants with our case. CONCLUSION: We conclude that mutations in STAG2 cause a novel constellation of sex-specific cohesinopathy-related phenotypes and are furthermore, essential for neurodevelopment, human growth, and behavioral development.


Assuntos
Antígenos Nucleares/genética , Deficiências do Desenvolvimento/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Transtornos do Crescimento/genética , Fenótipo , Polidactilia/genética , Proteínas de Ciclo Celular , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Transtornos do Crescimento/patologia , Humanos , Masculino , Mutação de Sentido Incorreto , Polidactilia/patologia , Síndrome
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa