Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 103(1): 13-25, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27677649

RESUMO

There is an urgent need to discover new anti-tubercular agents with novel mechanisms of action in order to tackle the scourge of drug-resistant tuberculosis. Here, we report the identification of such a molecule - an AminoPYrimidine-Sulfonamide (APYS1) that has potent, bactericidal activity against M. tuberculosis. Mutations in APYS1-resistant M. tuberculosis mapped exclusively to wag31, a gene that encodes a scaffolding protein thought to orchestrate cell elongation. Recombineering confirmed that a Gln201Arg mutation in Wag31 was sufficient to cause resistance to APYS1, however, neither overexpression nor conditional depletion of wag31 impacted M. tuberculosis susceptibility to this compound. In contrast, expression of the wildtype allele of wag31 in APYS1-resistant M. tuberculosis was dominant and restored susceptibility to APYS1 to wildtype levels. Time-lapse imaging and scanning electron microscopy revealed that APYS1 caused gross malformation of the old pole of M. tuberculosis, with eventual lysis. These effects resembled the morphological changes observed following transcriptional silencing of wag31 in M. tuberculosis. These data show that Wag31 is likely not the direct target of APYS1, but the striking phenotypic similarity between APYS1 exposure and genetic depletion of Wag31 in M. tuberculosis suggests that APYS1 might indirectly affect Wag31 through an as yet unknown mechanism.


Assuntos
Antituberculosos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pirimidinas/farmacocinética , Antibacterianos/farmacocinética , Crescimento Celular , Descoberta de Drogas/métodos , Regulação Bacteriana da Expressão Gênica/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Homologia de Sequência de Aminoácidos , Sulfonamidas/metabolismo , Sulfonamidas/farmacocinética , Imagem com Lapso de Tempo
2.
Antimicrob Agents Chemother ; 59(2): 1308-19, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25421469

RESUMO

Recent clinical studies indicate that meropenem, a ß-lactam antibiotic, is a promising candidate for therapy of drug-resistant tuberculosis. However, meropenem is chemically unstable, requires frequent intravenous injection, and must be combined with a ß-lactamase inhibitor (clavulanate) for optimal activity. Here, we report that faropenem, a stable and orally bioavailable ß-lactam, efficiently kills Mycobacterium tuberculosis even in the absence of clavulanate. The target enzymes, L,D-transpeptidases, were inactivated 6- to 22-fold more efficiently by faropenem than by meropenem. Using a real-time assay based on quantitative time-lapse microscopy and microfluidics, we demonstrate the superiority of faropenem to the frontline antituberculosis drug isoniazid in its ability to induce the rapid cytolysis of single cells. Faropenem also showed superior activity against a cryptic subpopulation of nongrowing but metabolically active cells, which may correspond to the viable but nonculturable forms believed to be responsible for relapses following prolonged chemotherapy. These results identify faropenem to be a potential candidate for alternative therapy of drug-resistant tuberculosis.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , beta-Lactamas/farmacologia , Isoniazida/farmacologia , Peptidil Transferases/metabolismo
3.
J Immunol ; 188(8): 3903-11, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22407913

RESUMO

The precise role of human epidermal Langerhans cells (LCs) in immune response is highly controversial. While studying the gene expression profile of these cells, we were intrigued to identify the HLA-DQB2 gene as potentially expressed in LCs. Despite a strong evolutionary conservation of their sequences, the concomitant expression of the poorly polymorphic HLA-DQA2/HLA-DQB2 genes, paralogous to the HLA-DQA1/HLA-DQB1 genes, has never been detected in any cell type. We confirmed by RT-PCR that the HLA-DQA2 and -DQB2 genes are both expressed in LCs, but not in monocyte-derived dendritic cells, or in blood CD1c(+) or plasmacytoid dendritic cells. The presence of the HLA-DQß2 chain in LCs could be demonstrated by Western blotting, whereas immunofluorescence revealed its localization in early endosomes. As in the case of other HLA class II molecules, the HLA-DQα2 and -DQß2 chains formed heterodimers that had to associate with the invariant chain to reach endosomal compartments. HLA-DQα2/ß2 heterodimers were expressed at the cell surface, where they could mediate staphylococcal superantigen stimulation of T cells. Interestingly, HLA-DQα2 and HLA-DQß1 chains formed mixed heterodimers which efficiently left the endoplasmic reticulum. These observations strongly suggest that the poorly polymorphic HLA-DQA2 and -DQB2 genes should be considered to be of immunological importance. The HLA-DQα2/ß2 molecules could influence the complexity of the repertoire of Ags presented by LCs.


Assuntos
Antígenos HLA-DQ/genética , Células de Langerhans/imunologia , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Diferenciação de Linfócitos B/imunologia , Western Blotting , Linhagem Celular , Clonagem Molecular , Sequência Conservada , Retículo Endoplasmático/genética , Retículo Endoplasmático/imunologia , Endossomos/genética , Endossomos/imunologia , Éxons , Imunofluorescência , Expressão Gênica , Antígenos HLA-DQ/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Células de Langerhans/citologia , Células de Langerhans/metabolismo , Plasmídeos , Multimerização Proteica , Análise de Sequência de DNA
4.
Proc Natl Acad Sci U S A ; 108(34): 14228-33, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21844346

RESUMO

CD1e is a member of the CD1 family that participates in lipid antigen presentation without interacting with the T-cell receptor. It binds lipids in lysosomes and facilitates processing of complex glycolipids, thus promoting editing of lipid antigens. We find that CD1e may positively or negatively affect lipid presentation by CD1b, CD1c, and CD1d. This effect is caused by the capacity of CD1e to facilitate rapid formation of CD1-lipid complexes, as shown for CD1d, and also to accelerate their turnover. Similar results were obtained with antigen-presenting cells from CD1e transgenic mice in which lipid complexes are assembled more efficiently and show faster turnover than in WT antigen-presenting cells. These effects maximize and temporally narrow CD1-restricted responses, as shown by reactivity to Sphingomonas paucimobilis-derived lipid antigens. CD1e is therefore an important modulator of both group 1 and group 2 CD1-restricted responses influencing the lipid antigen availability as well as the generation and persistence of CD1-lipid complexes.


Assuntos
Antígenos CD1/imunologia , Imunidade/imunologia , Lipídeos/imunologia , Animais , Apresentação de Antígeno/imunologia , Células Clonais , Células Dendríticas/imunologia , Glicolipídeos/imunologia , Glicoproteínas/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Humanos , Cinética , Camundongos , Camundongos Transgênicos , Células T Matadoras Naturais/imunologia , Sphingomonas/imunologia
5.
Elife ; 102021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34219648

RESUMO

Uropathogenic Escherichia coli (UPEC) proliferate within superficial bladder umbrella cells to form intracellular bacterial communities (IBCs) during early stages of urinary tract infections. However, the dynamic responses of IBCs to host stresses and antibiotic therapy are difficult to assess in situ. We develop a human bladder-chip model wherein umbrella cells and bladder microvascular endothelial cells are co-cultured under flow in urine and nutritive media respectively, and bladder filling and voiding mimicked mechanically by application and release of linear strain. Using time-lapse microscopy, we show that rapid recruitment of neutrophils from the vascular channel to sites of infection leads to swarm and neutrophil extracellular trap formation but does not prevent IBC formation. Subsequently, we tracked bacterial growth dynamics in individual IBCs through two cycles of antibiotic administration interspersed with recovery periods which revealed that the elimination of bacteria within IBCs by the antibiotic was delayed, and in some instances, did not occur at all. During the recovery period, rapid proliferation in a significant fraction of IBCs reseeded new foci of infection through bacterial shedding and host cell exfoliation. These insights reinforce a dynamic role for IBCs as harbors of bacterial persistence, with significant consequences for non-compliance with antibiotic regimens.


Urinary tract infections are one of the most common reasons people need antibiotics. These bacterial infections are typically caused by uropathogenic Escherichia coli (also known as UPEC), which either float freely in the urine and wash away when the bladder empties, or form communities inside cells that the bladder struggles to clear. It is possible that the bacteria living within cells are also more protected from the immune system and antibiotics. But this is hard to study in animal models. To overcome this, Sharma et al. built a 'bladder-chip' which mimics the interface between the blood vessels and the tissue layers of the human bladder. Similar chip devices have also been made for other organs. However, until now, no such model had been developed for the bladder. On the chip created by Sharma et al. is a layer of bladder cells which sit at the bottom of a channel filled with diluted human urine. These cells were infected with UPEC, and then imaged over time to see how the bacteria moved, interacted with the bladder cells, and aggregated together. Immune cells from human blood were then added to a vascular channel underneath the bladder tissue, which is coated with endothelial cells that normally line blood vessels. The immune cells rapidly crossed the endothelial barrier and entered the bladder tissue, and swarmed around sites of infection. In some instances, they released the contents of their cells to form net-like traps to catch the bacteria. But these traps failed to remove the bacteria living inside bladder cells. Antibiotics were then added to the urine flowing over the bladder cells as well as the vascular channel, similar to how drugs would be delivered in live human tissue. Sharma et al. discovered that the antibiotics killed bacteria residing in bladder cells slower than bacteria floating freely in the urine. Furthermore, they found that bacteria living in tightly packed communities within bladder cells were more likely to survive treatment and go on to re-infect other parts of the tissue. Antibiotic resistance is a pressing global challenge, and recurrent urinary tract infections are a significant contributor. The bladder-chip presented here could further our understanding of how these bacterial infections develop in vivo and how good antibiotics are at removing them. This could help researchers identify the best dosing and treatment strategies, as well as provide a platform for rapidly testing new antibiotic drugs and other therapies.


Assuntos
Técnicas Bacteriológicas/instrumentação , Dispositivos Lab-On-A-Chip , Bexiga Urinária/irrigação sanguínea , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica , Linhagem Celular Tumoral , Técnicas de Cocultura , Células Endoteliais/fisiologia , Humanos , Neutrófilos/fisiologia
6.
Cell Rep ; 36(3): 109351, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289360

RESUMO

Recurrence of uropathogenic Escherichia coli (UPEC) infections has been attributed to reactivation of quiescent intracellular reservoirs (QIRs) in deep layers of the bladder wall. QIRs are thought to arise late during infection following dispersal of bacteria from intracellular bacterial communities (IBCs) in superficial umbrella cells. Here, we track the formation of QIR-like bacteria in a bladder organoid model that recapitulates the stratified uroepithelium within a volume suitable for high-resolution live-cell imaging. Bacteria injected into the organoid lumen enter umbrella-like cells and proliferate to form IBC-like bodies. In parallel, single bacteria penetrate deeper layers of the organoid wall, where they localize within or between uroepithelial cells. These "solitary" bacteria evade killing by antibiotics and neutrophils and are morphologically distinct from bacteria in IBCs. We conclude that bacteria with QIR-like properties may arise at early stages of infection, independent of IBC formation and rupture.


Assuntos
Antibacterianos/farmacologia , Modelos Biológicos , Neutrófilos/patologia , Organoides/microbiologia , Bexiga Urinária/microbiologia , Escherichia coli Uropatogênica/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Feminino , Humanos , Imageamento Tridimensional , Camundongos Endogâmicos C57BL , Viabilidade Microbiana/efeitos dos fármacos , Movimento , Neutrófilos/efeitos dos fármacos , Organoides/efeitos dos fármacos , Organoides/ultraestrutura , Bexiga Urinária/patologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/crescimento & desenvolvimento , Escherichia coli Uropatogênica/ultraestrutura
7.
EBioMedicine ; 8: 291-301, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27428438

RESUMO

Despite being one of the first antitubercular agents identified, isoniazid (INH) is still the most prescribed drug for prophylaxis and tuberculosis (TB) treatment and, together with rifampicin, the pillars of current chemotherapy. A high percentage of isoniazid resistance is linked to mutations in the pro-drug activating enzyme KatG, so the discovery of direct inhibitors (DI) of the enoyl-ACP reductase (InhA) has been pursued by many groups leading to the identification of different enzyme inhibitors, active against Mycobacterium tuberculosis (Mtb), but with poor physicochemical properties to be considered as preclinical candidates. Here, we present a series of InhA DI active against multidrug (MDR) and extensively (XDR) drug-resistant clinical isolates as well as in TB murine models when orally dosed that can be a promising foundation for a future treatment.


Assuntos
Antituberculosos/farmacologia , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Animais , Antituberculosos/química , Sítios de Ligação , Domínio Catalítico , Modelos Animais de Doenças , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Inibidores Enzimáticos/química , Feminino , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Microssomos , Modelos Moleculares , Mutação , Mycobacterium tuberculosis/genética , Ligação Proteica , Conformação Proteica , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose/mortalidade , Tuberculose Resistente a Múltiplos Medicamentos
8.
J Med Chem ; 57(12): 5419-34, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24871036

RESUMO

4-Aminoquinolone piperidine amides (AQs) were identified as a novel scaffold starting from a whole cell screen, with potent cidality on Mycobacterium tuberculosis (Mtb). Evaluation of the minimum inhibitory concentrations, followed by whole genome sequencing of mutants raised against AQs, identified decaprenylphosphoryl-ß-d-ribose 2'-epimerase (DprE1) as the primary target responsible for the antitubercular activity. Mass spectrometry and enzyme kinetic studies indicated that AQs are noncovalent, reversible inhibitors of DprE1 with slow on rates and long residence times of ∼100 min on the enzyme. In general, AQs have excellent leadlike properties and good in vitro secondary pharmacology profile. Although the scaffold started off as a single active compound with moderate potency from the whole cell screen, structure-activity relationship optimization of the scaffold led to compounds with potent DprE1 inhibition (IC50 < 10 nM) along with potent cellular activity (MIC = 60 nM) against Mtb.


Assuntos
Amidas/química , Antituberculosos/química , Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Piperidinas/química , Quinolonas/química , Oxirredutases do Álcool , Amidas/farmacocinética , Amidas/farmacologia , Animais , Antituberculosos/farmacocinética , Antituberculosos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Farmacorresistência Bacteriana , Genoma Bacteriano , Humanos , Cinética , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mutação , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Piperidinas/farmacocinética , Piperidinas/farmacologia , Ligação Proteica , Quinolonas/farmacocinética , Quinolonas/farmacologia , Ratos Wistar , Estereoisomerismo , Relação Estrutura-Atividade
9.
Science ; 339(6115): 91-5, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23288538

RESUMO

Exposure of an isogenic bacterial population to a cidal antibiotic typically fails to eliminate a small fraction of refractory cells. Historically, fractional killing has been attributed to infrequently dividing or nondividing "persisters." Using microfluidic cultures and time-lapse microscopy, we found that Mycobacterium smegmatis persists by dividing in the presence of the drug isoniazid (INH). Although persistence in these studies was characterized by stable numbers of cells, this apparent stability was actually a dynamic state of balanced division and death. Single cells expressed catalase-peroxidase (KatG), which activates INH, in stochastic pulses that were negatively correlated with cell survival. These behaviors may reflect epigenetic effects, because KatG pulsing and death were correlated between sibling cells. Selection of lineages characterized by infrequent KatG pulsing could allow nonresponsive adaptation during prolonged drug exposure.


Assuntos
Antituberculosos/farmacologia , Catalase/biossíntese , Isoniazida/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Estresse Fisiológico , Catalase/genética , Epigênese Genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium smegmatis/genética
10.
PLoS One ; 7(8): e42634, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22880058

RESUMO

The CD1e protein participates in the presentation of lipid antigens in dendritic cells. Its transmembrane precursor is transported to lysosomes where it is cleaved into an active soluble form. In the presence of bafilomycin, which inhibits vacuolar ATPase and consequently the acidification of endosomal compartments, CD1e associates with a 27 kD protein. In this work, we identified this molecular partner as LAPTM5. The latter protein and CD1e colocalize in trans-Golgi and late endosomal compartments. The quantity of LAPTM5/CD1e complexes increases when the cells are treated with bafilomycin, probably due to the protection of LAPTM5 from lysosomal proteases. Moreover, we could demonstrate that LAPTM5/CD1e association occurs under physiological conditions. Although LAPTM5 was previously shown to act as a platform recruiting ubiquitin ligases and facilitating the transport of receptors to lysosomes, we found no evidence that LATPM5 controls either CD1e ubiquitination or the generation of soluble lysosomal CD1e proteins. Notwithstanding these last observations, the interaction of LAPTM5 with CD1e and their colocalization in antigen processing compartments both suggest that LAPTM5 might influence the role of CD1e in the presentation of lipid antigens.


Assuntos
Antígenos CD1/metabolismo , Proteínas de Membrana/metabolismo , Compartimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Meia-Vida , Células HeLa , Humanos , Imunoprecipitação , Macrolídeos/farmacologia , Melanoma/genética , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade/efeitos dos fármacos , Transfecção , Ubiquitinação/efeitos dos fármacos , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/metabolismo
11.
FEBS J ; 278(12): 2022-33, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21481186

RESUMO

The plasma membrane proteins CD1a, CD1b and CD1c are expressed by human dendritic cells, the professional antigen-presenting cells of the immune system, and present lipid antigens to T lymphocytes. CD1e belongs to the same family of molecules, but accumulates as a membrane-associated form in the Golgi compartments of immature dendritic cells and as a soluble cleaved form in the lysosomes of mature dendritic cells. In lysosomes, the N-terminal propeptide of CD1e is also cleaved, but the functional consequences of this step are unknown. Here, we investigated how the pH changes encountered during transport to lysosomes affect the structure of CD1e and its ligand-binding properties. Circular dichroism studies demonstrated that the secondary and tertiary structures of recombinant CD1e were barely altered by pH changes. Nevertheless, at acidic pH, guanidium chloride-induced unfolding of CD1e molecules required lower concentrations of denaturing agent. The nonfunctional L194P allelic variant was found to be structurally less stable at acidic pH than the functional forms, providing an explanation for the lack of its detection in lysosomes. The number of water-exposed hydrophobic patches that bind 8-anilinonaphthalene-1-sulfonate was higher in acidic conditions, especially for the L194P variant. CD1e molecules interacted with lipid surfaces enriched in anionic lipids, such as bis(monoacylglycero)phosphate, a late endosomal/lysosomal lipid, especially at acidic pH, or when the propeptide was present. Altogether, these data indicate that, in the late endosomes/lysosomes of DCs, the acid pH promotes the binding of lipid antigens to CD1e through increased hydrophobic and ionic interactions.


Assuntos
Antígenos CD1/química , Antígenos CD1/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Endossomos/metabolismo , Substituição de Aminoácidos , Antígenos CD1/genética , Sítios de Ligação , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Ligantes , Metabolismo dos Lipídeos , Lipossomos/metabolismo , Desnaturação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
J Immunol ; 180(6): 3642-6, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18325888

RESUMO

The human CD1a-d proteins are plasma membrane molecules involved in the presentation of lipid Ags to T cells. In contrast, CD1e is an intracellular protein present in a soluble form in late endosomes or lysosomes and is essential for the processing of complex glycolipid Ags such as hexamannosylated phosphatidyl-myo-inositol, PIM(6). CD1e is formed by the association of beta(2)-microglobulin with an alpha-chain encoded by a polymorphic gene. We report here that one variant of CD1e with a proline at position 194, encoded by allele 4, does not assist PIM(6) presentation to CD1b-restricted specific T cells. The immunological incompetence of this CD1e variant is mainly due to inefficient assembly and poor transport of this molecule to late endosomal compartments. Although the allele 4 of CD1E is not frequent in the population, our findings suggest that homozygous individuals might display an altered immune response to complex glycolipid Ags.


Assuntos
Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Antígenos CD1/genética , Antígenos CD1/metabolismo , Glicoproteínas/metabolismo , Mutação , Alelos , Substituição de Aminoácidos/genética , Substituição de Aminoácidos/imunologia , Animais , Antígenos CD1/fisiologia , Linhagem Celular Tumoral , Células Clonais , Endossomos/genética , Endossomos/imunologia , Endossomos/metabolismo , Gangliosídeos/genética , Gangliosídeos/metabolismo , Glicolipídeos/genética , Glicolipídeos/metabolismo , Glicolipídeos/fisiologia , Glicoproteínas/genética , Glicoproteínas/fisiologia , Humanos , Polimorfismo Genético , Processamento de Proteína Pós-Traducional/imunologia , Transporte Proteico/genética , Transporte Proteico/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa