Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
PLoS Genet ; 19(2): e1010347, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36763677

RESUMO

Recombination is often suppressed at sex-determining loci in plants and animals, and at self-incompatibility or mating-type loci in plants and fungi. In fungal ascomycetes, recombination suppression around the mating-type locus is associated with pseudo-homothallism, i.e. the production of self-fertile dikaryotic sexual spores carrying the two opposite mating types. This has been well studied in two species complexes from different families of Sordariales: Podospora anserina and Neurospora tetrasperma. However, it is unclear whether this intriguing association holds in other species. We show here that Schizothecium tetrasporum, a fungus from a third family in the order Sordariales, also produces mostly self-fertile dikaryotic spores carrying the two opposite mating types. This was due to a high frequency of second meiotic division segregation at the mating-type locus, indicating the occurrence of a single and systematic crossing-over event between the mating-type locus and the centromere, as in P. anserina. The mating-type locus has the typical Sordariales organization, plus a MAT1-1-1 pseudogene in the MAT1-2 haplotype. High-quality genome assemblies of opposite mating types and segregation analyses revealed a suppression of recombination in a region of 1.47 Mb around the mating-type locus. We detected three evolutionary strata, indicating a stepwise extension of recombination suppression. The three strata displayed no rearrangement or transposable element accumulation but gene losses and gene disruptions were present, and precisely at the strata margins. Our findings indicate a convergent evolution of self-fertile dikaryotic sexual spores across multiple ascomycete fungi. The particular pattern of meiotic segregation at the mating-type locus was associated with recombination suppression around this locus, that had extended stepwise. This association between pseudo-homothallism and recombination suppression across lineages and the presence of gene disruption at the strata limits are consistent with a recently proposed mechanism of sheltering deleterious alleles to explain stepwise recombination suppression.


Assuntos
Ascomicetos , Sordariales , Genes Fúngicos Tipo Acasalamento/genética , Reprodução/genética , Ascomicetos/genética , Sordariales/genética , Recombinação Genética/genética , Esporos
2.
Mol Phylogenet Evol ; 189: 107938, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820761

RESUMO

The order Sordariales is taxonomically diverse, and harbours many species with different lifestyles and large economic importance. Despite its importance, a robust genome-scale phylogeny, and associated comparative genomic analysis of the order is lacking. In this study, we examined whole-genome data from 99 Sordariales, including 52 newly sequenced genomes, and seven outgroup taxa. We inferred a comprehensive phylogeny that resolved several contentious relationships amongst families in the order, and cleared-up intrafamily relationships within the Podosporaceae. Extensive comparative genomics showed that genomes from the three largest families in the dataset (Chaetomiaceae, Podosporaceae and Sordariaceae) differ greatly in GC content, genome size, gene number, repeat percentage, evolutionary rate, and genome content affected by repeat-induced point mutations (RIP). All genomic traits showed phylogenetic signal, and ancestral state reconstruction revealed that the variation of the properties stems primarily from within-family evolution. Together, the results provide a thorough framework for understanding genome evolution in this important group of fungi.


Assuntos
Genômica , Sordariales , Humanos , Filogenia , Genômica/métodos , Genoma , Sordariales/genética , Sequência de Bases , Evolução Molecular
3.
Mol Biol Evol ; 38(6): 2475-2492, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33555341

RESUMO

Sex chromosomes often carry large nonrecombining regions that can extend progressively over time, generating evolutionary strata of sequence divergence. However, some sex chromosomes display an incomplete suppression of recombination. Large genomic regions without recombination and evolutionary strata have also been documented around fungal mating-type loci, but have been studied in only a few fungal systems. In the model fungus Podospora anserina (Ascomycota, Sordariomycetes), the reference S strain lacks recombination across a 0.8-Mb region around the mating-type locus. The lack of recombination in this region ensures that nuclei of opposite mating types are packaged into a single ascospore (pseudohomothallic lifecycle). We found evidence for a lack of recombination around the mating-type locus in the genomes of ten P. anserina strains and six closely related pseudohomothallic Podospora species. Importantly, the size of the nonrecombining region differed between strains and species, as indicated by the heterozygosity levels around the mating-type locus and experimental selfing. The nonrecombining region is probably labile and polymorphic, differing in size and precise location within and between species, resulting in occasional, but infrequent, recombination at a given base pair. This view is also supported by the low divergence between mating types, and the lack of strong linkage disequilibrium, chromosomal rearrangements, transspecific polymorphism and genomic degeneration. We found a pattern suggestive of evolutionary strata in P. pseudocomata. The observed heterozygosity levels indicate low but nonnull outcrossing rates in nature in these pseudohomothallic fungi. This study adds to our understanding of mating-type chromosome evolution and its relationship to mating systems.


Assuntos
Evolução Biológica , Cromossomos Fúngicos , Genes Fúngicos Tipo Acasalamento , Podospora/genética , Recombinação Genética , Conversão Gênica , Heterozigoto , Autofertilização
4.
Fungal Genet Biol ; 161: 103711, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35597448

RESUMO

The Crippled Growth (CG) cell degeneration of the model ascomycete Podospora anserina (strain S) is controlled by a prion-like element and has been linked to the self-activation of the PaMpk1 MAP kinase cascade. Here, we report on the identification of the "86-11" locus containing twelve genes, ten of which are involved either in setting up the self-activation loop of CG or in inhibiting this loop, as demonstrated by targeted gene deletion. Interestingly, deletion of the whole locus results only in the elimination of CG and in no detectable additional physiological defect. Sequence comparison shows that these ten genes belong to four different families, each one endowed with a specific activity: two encode factors activating the loop, a third one encodes a factor crucial for inhibition of the loop and the fourth one participates in inhibiting the loop in a pathway parallel to the one controlled by the previously described PDC1 gene. Intriguingly, a very distant homologue of this "86-11" locus is present at the syntenic position in Podospora comata (strain T) that do not present Crippled Growth. Introgression of the P. comata strain T locus in P. anserina strain S and the P. anserina strain S in P. comata strain T showed that both drive CG in the P. anserina strain S genetic background, but not in the genetic background of strain P. comata T, indicating that genetic determinants outside the twelve-gene locus are responsible for lack of CG in P. comata strain T. Our data question the role of this twelve-gene locus in the physiology of P. anserina.


Assuntos
Família Multigênica , Podospora , Deleção de Genes , Sistema de Sinalização das MAP Quinases , Podospora/genética , Podospora/crescimento & desenvolvimento
5.
Environ Microbiol ; 23(3): 1594-1607, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33393164

RESUMO

Secreted proteins are key players in fungal physiology and cell protection against external stressing agents and antifungals. Oak stress-induced protein 1 (OSIP1) is a fungal-specific protein with unknown function. By using Podospora anserina and Phanerochaete chrysosporium as models, we combined both in vivo functional approaches and biophysical characterization of OSIP1 recombinant protein. The P. anserina OSIP1Δ mutant showed an increased sensitivity to the antifungal caspofungin compared to the wild type. This correlated with the production of a weakened extracellular exopolysaccharide/protein matrix (ECM). Since the recombinant OSIP1 from P. chrysosporium self-assembled as fibers and was capable of gelation, it is likely that OSIP1 is linked to ECM formation that acts as a physical barrier preventing drug toxicity. Moreover, compared to the wild type, the OSIP1Δ mutant was more sensitive to oak extractives including chaotropic phenols and benzenes. It exhibited a strongly modified secretome pattern and an increased production of proteins associated to the cell-wall integrity signalling pathway, when grown on oak sawdust. This demonstrates that OSIP1 has also an important role in fungal resistance to extractive-induced stress.


Assuntos
Phanerochaete , Podospora , Antifúngicos/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Phanerochaete/metabolismo , Transdução de Sinais
6.
New Phytol ; 229(5): 2470-2491, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33113229

RESUMO

Genomic regions determining sexual compatibility often display recombination suppression, as occurs in sex chromosomes, plant self-incompatibility loci and fungal mating-type loci. Regions lacking recombination can extend beyond the genes determining sexes or mating types, by several successive steps of recombination suppression. Here we review the evidence for recombination suppression around mating-type loci in fungi, sometimes encompassing vast regions of the mating-type chromosomes. The suppression of recombination at mating-type loci in fungi has long been recognized and maintains the multiallelic combinations required for correct compatibility determination. We review more recent evidence for expansions of recombination suppression beyond mating-type genes in fungi ('evolutionary strata'), which have been little studied and may be more pervasive than commonly thought. We discuss testable hypotheses for the ultimate (evolutionary) and proximate (mechanistic) causes for such expansions of recombination suppression, including (1) antagonistic selection, (2) association of additional functions to mating-type, such as uniparental mitochondria inheritance, (3) accumulation in the margin of nonrecombining regions of various factors, including deleterious mutations or transposable elements resulting from relaxed selection, or neutral rearrangements resulting from genetic drift. The study of recombination suppression in fungi could thus contribute to our understanding of recombination suppression expansion across a broader range of organisms.


Assuntos
Evolução Biológica , Genes Fúngicos Tipo Acasalamento , Fungos/genética , Genes Fúngicos Tipo Acasalamento/genética , Recombinação Genética/genética , Cromossomos Sexuais
7.
Mol Microbiol ; 110(4): 499-512, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30069939

RESUMO

The model fungus Podospora anserina exhibits Crippled Growth (CG), a cell degeneration process linked to the spreading of a prion-like hereditary element. Previous work has shown that the PaMpk1 MAP kinase and the PaNox1 NADPH oxidase are key player in setting up CG. Here, we identified PDC1, a new gene that negatively regulates the PaMpk1 pathway, by identifying the gene mutated in the PDC2205 mutant. This mutant exhibits strong CG in conditions where the wild-type does not. PDC1 encodes a small protein conserved in other Pezizomycotina. The protein contains four evolutionary-conserved cysteines, a tryptophan and a histidine; all six amino-acid are essential for function. PDC1 is located in the cytosol and is present in lower amounts in stationary hyphae in accordance with its role as a repressor. Epistasis analyses place PDC1 between PaMpk1 and PaNox1.


Assuntos
Proteínas Fúngicas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , NADPH Oxidase 1/genética , Podospora/crescimento & desenvolvimento , Podospora/genética , Piruvato Descarboxilase/genética , Sequência de Aminoácidos/genética , Regulação Fúngica da Expressão Gênica , Hifas/metabolismo , Mutação/genética
8.
Mol Genet Genomics ; 294(1): 177-190, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30288581

RESUMO

Mechanisms involved in fine adaptation of fungi to their environment include differential gene regulation associated with single nucleotide polymorphisms and indels (including transposons), horizontal gene transfer, gene copy amplification, as well as pseudogenization and gene loss. The two Podospora genome sequences examined here emphasize the role of pseudogenization and gene loss, which have rarely been documented in fungi. Podospora comata is a species closely related to Podospora anserina, a fungus used as model in several laboratories. Comparison of the genome of P. comata with that of P. anserina, whose genome is available for over 10 years, should yield interesting data related to the modalities of genome evolution between these two closely related fungal species that thrive in the same types of biotopes, i.e., herbivore dung. Here, we present the genome sequence of the mat + isolate of the P. comata reference strain T. Comparison with the genome of the mat + isolate of P. anserina strain S confirms that P. anserina and P. comata are likely two different species that rarely interbreed in nature. Despite having a 94-99% of nucleotide identity in the syntenic regions of their genomes, the two species differ by nearly 10% of their gene contents. Comparison of the species-specific gene sets uncovered genes that could be responsible for the known physiological differences between the two species. Finally, we identified 428 and 811 pseudogenes (3.8 and 7.2% of the genes) in P. anserina and P. comata, respectively. Presence of high numbers of pseudogenes supports the notion that difference in gene contents is due to gene loss rather than horizontal gene transfers. We propose that the high frequency of pseudogenization leading to gene loss in P. anserina and P. comata accompanies specialization of these two fungi. Gene loss may be more prevalent during the evolution of other fungi than usually thought.


Assuntos
Proteínas Fúngicas/genética , Podospora/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Mapeamento Cromossômico , Evolução Molecular , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Especiação Genética , Podospora/classificação , Pseudogenes , Análise de Sequência de RNA
9.
Fungal Genet Biol ; 132: 103257, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31351193

RESUMO

Fungi are very successful microorganisms capable of colonizing virtually any ecological niche where they must constantly cope with competitors including fungi, bacteria and nematodes. We have shown previously that the ascomycete Podopora anserina exhibits Hyphal Interference (HI), an antagonistic response triggered by direct contact of competing fungal hyphae. When challenged with Penicillium chrysogenum, P. anserina produces hydrogen peroxide at the confrontation and kills the hyphae of P. chrysogenum. Here, we report the characterization of the PDC2218 mutant affected in HI. When challenged with P. chrysogenum, the PDC2218 mutant produces a massive oxidative burst at the confrontation. However, this increased production of hydrogen peroxide is not correlated to increased cell death in P. chrysogenum. Hence, the oxidative burst and cell death in the challenger are uncoupled in PDC2218. The gene affected in PDC2218 is PaTim54, encoding the homologue of the budding yeast mitochondrial inner membrane import machinery component Tim54p. We show that PaTim54 is essential in P. anserina and that the phenotypes displayed by the PDC2218 mutant, renamed PaTim542218, are the consequence of a drastic reduction in the expression of PaTim54. Among these pleiotropic phenotypes, PDC2218-PaTim542218- displays increased lifespan, a phenotype in line with the observed mitochondrial defects in the mutant.


Assuntos
Antibiose/genética , Proteínas Fúngicas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/enzimologia , Podospora/enzimologia , Podospora/genética , Proteínas Fúngicas/genética , Peróxido de Hidrogênio/metabolismo , Hifas/metabolismo , Mutação , Estresse Oxidativo , Fenótipo , Podospora/fisiologia
10.
Adv Appl Microbiol ; 107: 141-187, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31128747

RESUMO

Fungi are prone to phenotypic instability, that is, the vegetative phase of these organisms, be they yeasts or molds, undergoes frequent switching between two or more behaviors, often with different morphologies, but also sometime having different physiologies without any obvious morphological outcome. In the context of industrial utilization of fungi, this can have a negative impact on the maintenance of strains and/or on their productivity. Instabilities have been shown to result from various mechanisms, either genetic or epigenetic. This chapter will review different types of instabilities and discuss some lesser-known ones, mostly in filamentous fungi, while it will direct readers to additional literature in the case of well-known phenomena such as the amyloid prions or fungal senescence. It will present in depth the "white/opaque" switch of Candida albicans and the "crippled growth" degeneration of the model fungus Podospora anserina. These are two of the most thoroughly studied epigenetic phenotypic switches. I will also discuss the "sectors" presented by many filamentous ascomycetes, for which a prion-based model exists but is not demonstrated. Finally, I will also describe intriguing examples of phenotypic instability for which an explanation has yet to be provided.


Assuntos
Variação Biológica da População , Fungos/fisiologia , Fenótipo , Fungos/citologia , Fungos/genética , Regulação Fúngica da Expressão Gênica
11.
Dev Biol ; 429(1): 285-305, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28629791

RESUMO

The molecular pathways involved in the development of multicellular fruiting bodies in fungi are still not well known. Especially, the interplay between the mycelium, the female tissues and the zygotic tissues of the fruiting bodies is poorly documented. Here, we describe PM154, a new strain of the model ascomycetes Podospora anserina able to mate with itself and that enabled the easy recovery of new mutants affected in fruiting body development. By complete genome sequencing of spod1, one of the new mutants, we identified an inositol phosphate polykinase gene as essential, especially for fruiting body development. A factor present in the wild type and diffusible in mutant hyphae was able to induce the development of the maternal tissues of the fruiting body in spod1, but failed to promote complete development of the zygotic ones. Addition of myo-inositol in the growth medium was able to increase the number of developing fruiting bodies in the wild type, but not in spod1. Overall, the data indicated that inositol and inositol polyphosphates were involved in promoting fruiting body maturation, but also in regulating the number of fruiting bodies that developed after fertilization. The same effect of inositol was seen in two other fungi, Sordaria macrospora and Chaetomium globosum. Key role of the inositol polyphosphate pathway during fruiting body maturation appears thus conserved during the evolution of Sordariales fungi.


Assuntos
Fosfatos de Inositol/metabolismo , Podospora/crescimento & desenvolvimento , Podospora/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Fertilidade , Carpóforos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Proteínas de Fluorescência Verde/metabolismo , Inositol/metabolismo , Sistema de Sinalização das MAP Quinases , Mosaicismo , Mutação/genética , Fenótipo , Pigmentos Biológicos/metabolismo , Podospora/enzimologia , Podospora/genética , Transporte Proteico , Reprodução , Sordariales/metabolismo , Esporos Fúngicos/metabolismo , Temperatura , Zigoto/metabolismo
12.
Dev Biol ; 421(2): 126-138, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27979655

RESUMO

Filamentous ascomycetes produce complex multicellular structures during sexual reproduction. Little is known about the genetic pathways enabling the construction of such structures. Here, with a combination of classical and reverse genetic methods, as well as genetic mosaic and graft analyses, we identify and provide evidence for key roles for two genes during the formation of perithecia, the sexual fruiting bodies, of the filamentous fungus Podospora anserina. Data indicate that the proteins coded by these two genes function cell-non-autonomously and that their activity depends upon conserved cysteines, making them good candidate for being involved in the transmission of a reactive oxygen species (ROS) signal generated by the PaNox1 NADPH oxidase inside the maturing fruiting body towards the PaMpk1 MAP kinase, which is located inside the underlying mycelium, in which nutrients are stored. These data provide important new insights to our understanding of how fungi build multicellular structures.


Assuntos
Carpóforos/crescimento & desenvolvimento , Carpóforos/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Podospora/crescimento & desenvolvimento , Podospora/genética , Transdução de Sinais/genética , Sequência de Aminoácidos , Western Blotting , Celulose/farmacologia , Sequência Conservada , Cisteína/metabolismo , Evolução Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Deleção de Genes , Teste de Complementação Genética , Proteínas de Fluorescência Verde/metabolismo , Mosaicismo , Micélio/metabolismo , Fenótipo , Fosforilação/efeitos dos fármacos , Frações Subcelulares/metabolismo , Vacúolos/metabolismo
13.
Mol Microbiol ; 103(4): 657-677, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27882646

RESUMO

Cell-cell fusion in fungi is required for colony formation, nutrient transfer and signal transduction. Disruption of genes required for hyphal fusion in Epichloë festucae, a mutualistic symbiont of Lolium grasses, severely disrupts the host interaction phenotype. They examined whether symB and symC, the E. festucae homologs of Podospora anserina self-signaling genes IDC2 and IDC3, are required for E. festucae hyphal fusion and host symbiosis. Deletion mutants of these genes were defective in hyphal cell fusion, formed intra-hyphal hyphae, and had enhanced conidiation. SymB-GFP and SymC-mRFP1 localize to plasma membrane, septa and points of hyphal cell fusion. Plants infected with ΔsymB and ΔsymC strains were severely stunted. Hyphae of the mutants colonized vascular bundles, were more abundant than wild type in the intercellular spaces and formed intra-hyphal hyphae. Although these phenotypes are identical to those previously observed for cell wall integrity MAP kinase mutants no difference was observed in the basal level of MpkA phosphorylation or its cellular localization in the mutant backgrounds. Both genes contain binding sites for the transcription factor ProA. Collectively these results show that SymB and SymC are key components of a conserved signaling network for E. festucae to maintain a mutualistic symbiotic interaction within L. perenne.


Assuntos
Epichloe/genética , Proteínas Fúngicas/genética , Hifas/genética , Lolium/crescimento & desenvolvimento , Proteínas de Membrana/genética , Esporos Fúngicos/crescimento & desenvolvimento , Simbiose/genética , Fusão Celular , Epichloe/fisiologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas/fisiologia , Lolium/microbiologia , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Deleção de Sequência/genética , Esporos Fúngicos/genética , Fatores de Transcrição/metabolismo
14.
Fungal Genet Biol ; 116: 1-13, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29654834

RESUMO

The Podospora anserina genome contains a large family of 15 multicopper oxidases (MCOs), including three genes encoding a FET3-like protein, an ABR1-like protein and an ascorbate oxidase (AO)-like protein. FET3, ABR1 and AO1 are involved in global laccase-like activity since deletion of the relevant genes led to a decrease of activity when laccase substrate (ABTS) was used as substrate. However, contrary to the P. anserina MCO proteins previously characterized, none of these three MCOs seemed to be involved in lignocellulose degradation and in resistance to phenolic compounds and oxidative stress. We showed that the bulk of ferroxidase activity was clearly due to ABR1, and only in minor part to FET3, although ABR1 does not contain all the residues typical of FET3 proteins. Moreover, we showed that ABR1, related to the Aspergillus fumigatus ABR1 protein, was clearly and specifically involved in pigmentation of ascospores. Surprisingly, phenotypes were more severe in mutants lacking both abr1 and ao1. Deletion of the ao1 gene led to an almost total loss of AO activity. No direct involvement of AO1 in fungal developmental process in P. anserina was evidenced, except in a abr1Δ background. Overall, unlike other previously characterized MCOs, we thus evidence a clear involvement of ABR1 protein in fungal development.


Assuntos
Proteínas Fúngicas/metabolismo , Oxirredutases/metabolismo , Podospora/enzimologia , Cobre/química , Lignina/metabolismo , Oxirredutases/química , Podospora/crescimento & desenvolvimento , Esporos Fúngicos
15.
Biochim Biophys Acta Gen Subj ; 1862(10): 2174-2182, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30025856

RESUMO

Oxylipins are secondary messengers used universally in the living world for communication and defense. The paradigm is that they are produced enzymatically for the eicosanoids and non-enzymatically for the isoprostanoids. They are supposed to be degraded into volatile organic compounds (VOCs) and to participate in aroma production. Some such chemicals composed of eight carbons are also envisoned as alternatives to fossil fuels. In fungi, oxylipins have been mostly studied in Aspergilli and shown to be involved in signalling asexual versus sexual development, mycotoxin production and interaction with the host for pathogenic species. Through targeted gene deletions of genes encoding oxylipin-producing enzymes and chemical analysis of oxylipins and volatile organic compounds, we show that in the distantly-related ascomycete Podospora anserina, isoprostanoids are likely produced enzymatically. We show the disappearance in the mutants lacking lipoxygenases and cyclooxygenases of the production of 10-hydroxy-octadecadienoic acid and that of 1-octen-3-ol, a common volatile compound. Importantly, this was correlated with the inability of the mutants to repel nematodes as efficiently as the wild type. Overall, our data show that in this fungus, oxylipins are not involved in signalling development but may rather be used directly or as precursors in the production of odors against potential agressors. SIGNIFICANCE: We analyzse the role in inter-kingdom communication of lipoxygenase (lox) and cyclooxygenase (cox) genes in the model fungus Podospora anserina. Through chemical analysis we define the oxylipins and volatile organic compounds (VOCs)produce by wild type and mutants for cox and lox genes, We show that the COX and LOX genes are required for the production of some eight carbon VOCs. We show that COX and LOX genes are involved in the production of chemicals repelling nematodes. This role is very different from the ones previously evidenced in other fungi.


Assuntos
Proteínas Fúngicas/metabolismo , Repelentes de Insetos/toxicidade , Lipoxigenases/metabolismo , Nematoides/imunologia , Podospora/enzimologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Compostos Orgânicos Voláteis/toxicidade , Animais , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Peroxidação de Lipídeos , Lipoxigenases/genética , Nematoides/efeitos dos fármacos , Oxilipinas/toxicidade , Prostaglandina-Endoperóxido Sintases/genética , Compostos Orgânicos Voláteis/análise
16.
J Environ Manage ; 216: 204-213, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28412056

RESUMO

The price volatility of fossil resources, the uncertainty of their long-term availability and the environmental, climatic and societal problems posed by their operation lead to the need of an energy transition enabling the development and utilization of other alternative and sustainable resources. Acknowledging that indirect land-use change can increase greenhouse gas emission, the European Union (EU) has reshaped its biofuel policy. It has set criteria for sustainability to ensure that the use of biofuels guarantees real carbon savings and protects biodiversity. From a sustainability perspective, biofuels and bioliquids offer indeed both advantages (e.g., more secure energy supply, emission reductions, reduced air pollution and production of high added-value molecules) as well as risks (monocultures, reduced biodiversity and even higher emissions through land use change). Approaching economic, environmental and social sustainability at the local level and in an integrated way should help to maximize benefits and minimize risks. This approach has been adopted and is described in the present work that combines chemical, biological, social and territorial studies on the management of pruning waste residues from olive trees in the Sierra Mágina in Spain. The biological and social analyses helped to orientate the research towards an attractive chemical process based on extraction and pyrolysis, in which high added value molecules are recovered and in which the residual biochar may be used as pathogen-free fertilizer. In this region where farmers face declining economic margins, the new intended method may both solve greenhouse gas emission problems and provide farmers with additional revenues and convenient fertilizers. Further research with a larger partnership will consolidate the results and tackle issues such as the logistics.


Assuntos
Biocombustíveis , Olea , Poluição do Ar , Fertilizantes , Espanha
17.
Appl Environ Microbiol ; 83(2)2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27836848

RESUMO

Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. IMPORTANCE: Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose dehydrogenase by increasing beta-glucosidase expression and using an alternate electron donor for LPMO.


Assuntos
Desidrogenases de Carboidrato/genética , Celulose/metabolismo , Proteínas Fúngicas/genética , Podospora/enzimologia , Podospora/genética , Desidrogenases de Carboidrato/metabolismo , Ativação Enzimática/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Fenótipo , Filogenia , Podospora/metabolismo
18.
PLoS Genet ; 10(5): e1004387, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24830502

RESUMO

Mendel laws of inheritance can be cheated by Meiotic Drive Elements (MDs), complex nuclear genetic loci found in various eukaryotic genomes and distorting segregation in their favor. Here, we identify and characterize in the model fungus Podospora anserina Spok1 and Spok2, two MDs known as Spore Killers. We show that they are related genes with both spore-killing distorter and spore-protecting responder activities carried out by the same allele. These alleles act as autonomous elements, exert their effects independently of their location in the genome and can act as MDs in other fungi. Additionally, Spok1 acts as a resistance factor to Spok2 killing. Genetical data and cytological analysis of Spok1 and Spok2 localization during the killing process suggest a complex mode of action for Spok proteins. Spok1 and Spok2 belong to a multigene family prevalent in the genomes of many ascomycetes. As they have no obvious cellular role, Spok1 and Spok2 Spore Killer genes represent a novel kind of selfish genetic elements prevalent in fungal genome that proliferate through meiotic distortion.


Assuntos
Segregação de Cromossomos/genética , Proteínas Fúngicas/genética , Meiose/genética , Podospora/genética , Alelos , Cruzamentos Genéticos , Esporos Fúngicos
19.
Mol Microbiol ; 95(6): 1006-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25424886

RESUMO

NADPH oxidases (Nox) are membrane complexes that produce O2(-). Researches in mammals, plants and fungi highlight the involvement of Nox-generated ROS in cell proliferation, differentiation and defense. In mammals, the core enzyme gp91(phox)/Nox2 is associated with p22(phox) forming the flavocytochrome b558 ready for activation by a cytosolic complex. Intriguingly, no homologue of the p22(phox) gene has been found in fungal genomes, questioning how the flavoenzyme forms. Using whole genome sequencing combined with phylogenetic analysis and structural studies, we identify the fungal p22(phox) homologue as being mutated in the Podospora anserina mutant IDC(509). Functional studies show that the fungal p22(phox), PaNoxD, acts along PaNox1, but not PaNox2, a second fungal gp91(phox) homologue. Finally, cytological analysis of functional tagged versions of PaNox1, PaNoxD and PaNoxR shows clear co-localization of PaNoxD and PaNox1 and unravel a dynamic assembly of the complex in the endoplasmic reticulum and in the vacuolar system.


Assuntos
Retículo Endoplasmático/enzimologia , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Podospora/enzimologia , Vacúolos/enzimologia , Sequência de Aminoácidos , Grupo dos Citocromos b/metabolismo , Genoma Fúngico , Mutação , Micélio/ultraestrutura , NADPH Oxidases/química , Filogenia , Podospora/genética , Análise de Sequência de DNA , Superóxidos/metabolismo
20.
Fungal Genet Biol ; 94: 1-10, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27353975

RESUMO

In filamentous fungi, entrance into stationary phase is complex as it is accompanied by several differentiation and developmental processes, including the synthesis of pigments, aerial hyphae, anastomoses and sporophores. The regulatory networks that control these processes are still incompletely known. The analysis of the "Impaired in the development of Crippled Growth (IDC)" mutants of the model filamentous ascomycete Podospora anserina has already yielded important information regarding the pathway regulating entrance into stationary phase. Here, the genes affected in two additional IDC mutants are identified as orthologues of the Saccharomyces cerevisiae WHI2 and PSR1 genes, known to regulate stationary phase in this yeast, arguing for a conserved role of these proteins throughout the evolution of ascomycetes.


Assuntos
Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Micélio/genética , Podospora/genética , Proteínas Fúngicas/genética , Teste de Complementação Genética , Mutação , Micélio/crescimento & desenvolvimento , Fosforilação , Podospora/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa