Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328200

RESUMO

Introduction: Artificial sweeteners are listed as ingredients of oral nicotine pouches (ONPs), a new product category with rapidly growing market share. The exact sweetener contents of ONPs remain unknown. Artificial sweeteners in ONPs may facilitate initiation and encourage consumption behavior. Aims and Methods: Artificial sweetener contents in major US-marketed ONP brands (Zyn, on!, Velo) were determined by Liquid Chromatography-Mass Spectrometry (LC-MS). Sweetener effects during the initiation of ONP consumption were modeled in single- and two-bottle tests, offering mice ONP extracts calibrated to contain nicotine levels similar to saliva of people who use smokeless tobacco. To examine the contribution of sweet taste perception, consumption behavior was compared between wild-type mice and mice deficient in the sweet taste receptor (Tas1r2-/-). Results: Acesulfame-K was detected in on!, Zyn and Velo ONPs (~0.3-0.9 mg/pouch), including products marketed as "Unflavored" or "Flavor ban approved". In Velo ONPs, sweetened with sucralose (0.6-1.2 mg/pouch), higher nicotine strength products contained higher sucralose levels. Tas1r2-/- mice consumed less ONP extracts than wild-type mice in both sexes. ONP extracts with both higher nicotine and sweetener strengths were tolerated by wild-type mice, but produced stronger aversion in Tas1r2-/- mice. Conclusions: ONPs contain significant amounts of artificial sweeteners, with some brands adding more sweetener to ONPs with higher nicotine strengths. Artificial sweeteners, at levels present in ONPs, increase nicotine consumption. Increasing sweetener contents facilitates consumption of ONPs with higher nicotine strengths. Sweetness is a key determinant of ONP use initiation, likely reducing the aversive sensory effects of nicotine and other ONP constituents. Implications: Artificial sweeteners such as acesulfame-K or sucralose reduce aversion and facilitate initiation and continued consumption of ONPs. The marketing of some artificially sweetened ONPs as "Unflavored" of "Flavor ban-approved" suggests that the tobacco industry rejects sweet taste as a determinant for the presence of a characterizing flavor. Sweetness as imparted by artificial sweeteners in tobacco products needs to be addressed by regulators as a component of a characterizing flavor, with the aim to reduce product appeal and initiation by never users, and especially youth attracted to sweet flavors.

2.
medRxiv ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38766027

RESUMO

The recent introduction of electronic cigarette products containing a synthetic nicotine analog, 6-methyl nicotine (6MN), challenges FDA's tobacco regulatory authority. A similar strategy is pursued by vendors of recently introduced e-cigarette liquids containing nicotinamide (NA), marketed as 'Nixotine' or 'Nixamide'. Compared to nicotine, 6MN is pharmacologically more potent at nicotinic receptors, and more toxic, raising concerns about increased addictiveness and adverse effects. Here, combinations of gas chromatography, high performance liquid chromatography and mass spectrometry were used to determine nicotine analogs, flavor and sweetener contents of e-cigarette liquids of the brands "SpreeBar" and ECBlend "Nixotine" products. All SpreeBar products, labelled as containing 5% 6-methyl nicotine, contained only 0.61-0.64% 6-methylnicotine, while "Nixotine" samples contained 7-46% less of the declared nicotinamide contents. Although "Nixotine" product labels did not list 6MN as an ingredient, small amounts of 6-methyl nicotine were detected. All 'SpreeBar' samples contained the artificial sweetener neotame (0.20-0.86µg/mg). Results identified significant discrepancies between declared and measured constituents of e-cigarette products containing nicotine alternatives. The discrepancy is misleading for consumers and raises concerns about production errors. 'SpreeBar' products also contained neotame, a high-intensity sweetener with high heat stability, likely increasing appeal to young and first-time users. Novel e-cigarette products with misleading labels containing nicotine analogs instead of nicotine on the US market is concerning and should be urgently addressed by lawmakers and regulators.

3.
medRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045384

RESUMO

As of April 14, 2022, the United States Food and Drug Administration (FDA) has been authorized to regulate tobacco products containing nicotine from any source, including synthetic, requiring manufacturers to submit a premarket tobacco product application (PMTA). A recent report by the World Health Organization (WHO) warned that non-nicotine tobacco alkaloids or other synthetic nicotine analogs could be used by manufacturers to bypass regulatory schemes focusing on nicotine alone. From October 2023 on, vape stores in the United States started selling a new electronic cigarette pod system, named Spree Bar, advertised as "PMTA exempt", with youth-appealing flavors and advertising. The products are marketed as containing "Metatine", a trademarked name for 6-methyl nicotine, a synthetic nicotine analog patented by a Chinese electronic cigarette manufacturer. Here we used liquid chromatography-mass spectrometry (LCMS) to confirm the presence of a chemical species with the molecular weight of 6-methyl nicotine in Spree Bar e-liquids. The FDA needs to determine whether, in its view, 6-methyl nicotine is a form of "nicotine" within the meaning of the Tobacco Control Act, or whether 6-methyl nicotine can be regulated as a drug under the Federal Food, Drug, and Cosmetic Act (FDCA).

4.
Bioorg Med Chem Lett ; 21(5): 1366-70, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21306895

RESUMO

A series of ß-aminoacyl containing thiazolidine derivatives was synthesized and evaluated for their ability to inhibit DPP-IV. Several thiazolidine derivatives with an acid moiety were found to be potent DPP-IV inhibitors. Among them, compound 2da is the most active in this series with an IC(50) value of 1 nM, and it showed excellent selectivity over DPP-IV related enzymes including DPP-2, DPP-8, and DPP-9. Compound 2da is chemically and metabolically stable, and showed no CYP inhibition, hERG binding or cytotoxicity. Compound 2db, an ester prodrug of 2da, showed good in vivo DPP-IV inhibition after oral administration in rat and dog models.


Assuntos
Inibidores da Dipeptidil Peptidase IV/síntese química , Tiazolidinas/síntese química , Administração Oral , Animais , Cristalografia por Raios X , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Modelos Animais de Doenças , Cães , Ativação Enzimática/efeitos dos fármacos , Concentração Inibidora 50 , Estrutura Molecular , Ratos , Tiazolidinas/química , Tiazolidinas/farmacologia
5.
Invest Ophthalmol Vis Sci ; 61(4): 32, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32334435

RESUMO

Purpose: Oxidative stress in retinal pigment epithelial (RPE) cells is associated with age-related macular degeneration (AMD). Resveratrol exerts a range of protective biologic effects, but its mechanism(s) are not well understood. The aim of this study was to investigate how resveratrol could affect biologic pathways in oxidatively stressed RPE cells. Methods: Cultured human RPE cells were treated with hydroquinone (HQ) in the presence or absence of resveratrol. Cell viability was determined with WST-1 reagent and trypan blue exclusion. Mitochondrial function was measured with the XFe24 Extracellular Flux Analyzer. Expression of heme oxygenase-1 (HO-1) and glutamate cysteine ligase catalytic subunit was evaluated by qPCR. Endoplasmic reticulum stress protein expression was measured by Western blot. Potential reactions between HQ and resveratrol were investigated using high-performance liquid chromatography mass spectrometry with resveratrol and additional oxidants for comparison. Results: RPE cells treated with the combination of resveratrol and HQ had significantly increased cell viability and improved mitochondrial function when compared with HQ-treated cells alone. Resveratrol in combination with HQ significantly upregulated HO-1 mRNA expression above that of HQ-treated cells alone. Resveratrol in combination with HQ upregulated C/EBP homologous protein and spliced X-box binding protein 1. Additionally, new compounds were formed from resveratrol and HQ coincubation. Conclusions: Resveratrol can ameliorate HQ-induced toxicity in RPE cells through improved mitochondrial bioenergetics, upregulated antioxidant genes, stimulated unfolded protein response, and direct oxidant interaction. This study provides insight into pathways through which resveratrol can protect RPE cells from oxidative damage, a factor thought to contribute to AMD pathogenesis.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Heme Oxigenase-1/genética , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Resveratrol/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Western Blotting/métodos , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroquinonas/farmacologia , Oxirredução , Reação em Cadeia da Polimerase em Tempo Real/métodos , Epitélio Pigmentado da Retina/citologia
6.
Methods Mol Biol ; 1996: 75-94, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31127549

RESUMO

As the principal one-carbon carriers in mammalian biology, tetrahydrofolates are crucial for normal and malignant cells to synthesize and repair DNA and are the target of extensive research, including metabolomics analysis. The susceptibility of tetrahydrofolates to oxidization, as well as the propensity of substituted tetrahydrofolates to chemical degradation, mandates the use of carefully controlled experimental conditions to ensure their integrity. Analytical protocols for LC analysis along with handling and storage conditions for 5-formyl-, 5,10-methenyl-,10-formyl-, 5-formimno-, and 5,10-methylenetetrahydrofolate are described.


Assuntos
Metabolômica/métodos , Tetra-Hidrofolatos/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Oxirredução , Tetra-Hidrofolatos/química , Tetra-Hidrofolatos/metabolismo
7.
Metabolomics ; 13(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29399009

RESUMO

INTRODUCTION: Metabolomics analysis depends on the identification and validation of specific metabolites. This task is significantly hampered by the absence of well-characterized reference standards. The one-carbon carrier 10-formyltetrahydrofolate acts as a donor of formyl groups in anabolism where it is a substrate in formyltransferase reactions in purine biosynthesis. It has been reported as an unstable substance and is currently unavailable as a reference standard for metabolomics analysis. OBJECTIVES: The current study was undertaken to provide the metabolomics community thoroughly characterized 10-formyltetrahydrofolate along with analytical methodology and guidelines for its storage and handling. METHODS: Anaerobic base treatment of 5,10-methenyltetrahydrofolate chloride in the presence of anti-oxidant was utilized to prepare 10-formyltetrahydrofolate. RESULTS: Pure 10-formyltetrahydrofolate has been prepared and physicochemically characterized. Conditions toward maintaining the stability of a solution of the dipotassium salt of 10-formyltetrahydrofolate in solution have been determined. CONCLUSION: This study describes the facile preparation of pure (>90%) 10-formyltetrahydrofolate, its qualitative physicochemical characterization, as well as conditions to enable its use as a reference standard in physiologic samples.

8.
J Pharm Biomed Anal ; 55(5): 1083-8, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21466936

RESUMO

A sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed for a novel dipeptidyl peptidase IV agonist (DDP-IV) agonist, KR-66223, in rat plasma. It involves liquid-liquid extraction (LLE) followed by HPLC separation and electrospray ionization tandem mass spectrometry. KR-66223 and imipramine (IS) was separated on Gemini-NX C18 column with mixture of acetonitrile-ammonium formate (10mM) (90:10, v/v) as mobile phase. The ion transitions monitored were m/z 553.2→206.2 for KR-66223, m/z 281.3→86.1 for imipramine in multiple reaction monitoring (MRM) mode. The linear ranges of the assay were 0.003-10µg/ml with a correlation coefficient (R(2)) greater than 0.99 and the lower limit of quantification was 3ng/ml. The average recovery was 78.9% and 87.1% from rat plasma for KR-66223 and imipramine, respectively. The coefficients of variation of intra- and inter-assay were 3.9-14.4% and the relative error was 0.8-11.5%. The method was validated and successfully applied to the pharmacokinetic study of KR-66223 in rat.


Assuntos
Aminobutiratos/sangue , Cromatografia Líquida/métodos , Dipeptidil Peptidase 4/agonistas , Espectrometria de Massas em Tandem/métodos , Tiazolidinas/química , Acetonitrilas/química , Aminobutiratos/química , Animais , Área Sob a Curva , Proteínas Sanguíneas/química , Calibragem , Formiatos/química , Imipramina/química , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Tiazolidinas/sangue , Valina/análogos & derivados
9.
J Phys Chem A ; 110(2): 700-8, 2006 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-16405343

RESUMO

Quantum mechanical/molecular mechanical (QM/MM) calculations and experimental kinetic studies have been performed on 4-oxalocrotonate tautomerase (4OT) for two different substrates, 2-hydroxymuconate (2HM) and 2-oxo-4-hexenedioate (2o4hex). Potential (deltaE) and free energy (deltaG) paths for both steps of the reaction using both substrates were calculated to determine the free energy barriers and compared to the experimental values obtained from the kinetic studies via the transition state theory. In the first step, a proton from the hydroxyl oxygen on the second carbon of 2HM, or from the third carbon of 2o4hex, is abstracted by Pro-1. In the second step, the proton is transferred to the fifth carbon of the substrate to form the product, 2-oxo-3-hexenedioate (2o3hex). For both substrates we obtain a calculated deltaG of approximately 13 kcal/mol, in agreement with experimental determinations. The calculated free energy barrier difference deltaG2o4hex - deltaG2HM (deltadeltaG) is 0.87 kcal/mol. We obtained an experimental deltadeltaG of 0.85 kcal/mol. These results suggest that 2HM is turned over faster than 2o4hex by 4OT. However, these energy differences are so small that both 2HM and 2o4hex need to be taken into account in considering the mechanism of catalysis of 4OT.


Assuntos
Isomerases/metabolismo , Modelos Teóricos , Cinética , Modelos Moleculares , Prótons , Ácido Sórbico/análogos & derivados , Ácido Sórbico/metabolismo , Especificidade por Substrato
10.
Biochemistry ; 41(13): 4480-91, 2002 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11914096

RESUMO

4-Oxalocrotonate tautomerase (4-OT) is a multimeric, bacterial enzyme comprised of 6 identical 62-amino acid subunits, which associate under native conditions to form a homo-hexameric structure stabilized entirely by noncovalent interactions. We have previously shown that the GuHCl-induced equilibrium unfolding of 4-OT at pH 8.5 is well modeled as a two-state process involving only hexamer and unfolded monomer; and we have obtained spectroscopic evidence that intermediate state(s) is (are) populated in the equilibrium unfolding reaction at pHs 6.0 and 7.4 [Silinski, P., Allingham, M. J., and Fitzgerald, M. C. (2001) Biochemistry 40, 4493-4502]. Here, we report on the pH-induced equilibrium unfolding of 4-OT using size-exclusion chromatography (SEC), far-UV-circular dichroism (CD) spectroscopy, and catalytic activity measurements over the pH range from 1.5 to 10.1. Our results indicate that the native hexamer of 4-OT is the predominant species in solution at pHs > or =6.2, that a partially folded dimeric state of 4-OT is stabilized in solution at pH 4.8, and that the enzyme is largely denatured in strongly acidic solutions (pH < or =3.1). GuHCl-induced equilibrium unfolding studies on 4-OT at pH 4.8 indicate that the folded 4-OT dimer populated at this pH is stabilized by 11.7 kcal.mol(-1). The results of biophysical studies on a fluorescent analogue of the enzyme, 4-OT(F50Y), and the results of UV photo-cross-linking studies on a synthetically derived 4-OT analogue, 4-OT(P1Bpa), suggest the polypeptide chains in the 4-OT dimer are nativelike in structure with the exception of their C-termini.


Assuntos
Isomerases/química , Catálise , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Dimerização , Relação Dose-Resposta a Droga , Guanidina/farmacologia , Concentração de Íons de Hidrogênio , Cinética , Espectrometria de Massas , Modelos Biológicos , Modelos Químicos , Desnaturação Proteica , Dobramento de Proteína , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo , Raios Ultravioleta
11.
Biochemistry ; 42(21): 6620-30, 2003 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-12767246

RESUMO

Here we describe the total chemical synthesis and biophysical characterization of two backbone-modified, ester bond-containing analogues of the homohexameric enzyme 4-oxalocrotonate tautomerase (4OT). The amide-to-ester bond mutations in the two analogues in this study, (OI2)4OT and (OI7)4OT, were designed to effectively delete specific backbone-backbone hydrogen bonds in the beta-sheet region of the native 4OT hexamer. The (OI2)4OT and (OI7)4OT analogues each contained one ester bond per monomer that effectively deleted 12 backbone-backbone hydrogen bonds per hexamer. The structural properties of each analogue were characterized by size-exclusion chromatography (SEC), far-UV CD spectroscopy, and catalytic activity measurements, and they were found to be very similar to the structural properties of the wild-type enzyme. The results of equilibrium unfolding studies revealed that the (OI2)4OT and (OI7)4OT analogues were stabilized by 47.7 +/- 2.5 and 45.0 +/- 2.5 kcal/mol, respectively, under standard state conditions (1 M hexamer) as compared to a value of 69.6 +/- 3.3 kcal/mol for the wild-type control. Our results suggest that the two different, but structurally similar, backbone-backbone hydrogen bonds deleted in (OI2)4OT and (OI7)4OT make nearly equivalent contributions to the thermodynamic stability of the 4OT hexamer.


Assuntos
Isomerases/química , Isomerases/genética , Mutação , Aminoácidos/química , Cromatografia , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Guanidina/farmacologia , Ligação de Hidrogênio , Biossíntese Peptídica , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Fatores de Tempo , Raios Ultravioleta
12.
Biochemistry ; 43(22): 6885-92, 2004 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-15170325

RESUMO

The role of polypeptide backbone interactions in 4-oxalocrotonate tautomerase (4OT) catalysis has been investigated using a combination of site-directed mutagenesis experiments with unnatural amino acids and quantum mechanical/molecular mechanical (QM/MM) calculations of the 4OT reaction mechanism. Energy barriers for the wild-type enzyme (wt-4OT) and for a 4OT analogue containing a backbone amide to ester bond mutation between Ile-7 and Leu-8 [(OL8)4OT] were determined by both theory and experiment. The amide to ester bond mutation in (OL8)4OT effectively deleted a putative hydrogen bonding interaction between the enzyme's polypeptide backbone and its substrate. Recent theoretical calculations for the 4OT reaction mechanism suggested that this hydrogen bonding interaction helps properly position the substrate in the active site [Cisneros, G. A., et al. (2003) J. Am. Chem. Soc. 125, 10384-10393]. Our experimental results for (OL8)4OT reveal that the energy barrier for the (OL8)4OT-catalyzed reaction was increased 1.8 kcal/mol over that of the wild-type enzyme. This increase was in good agreement with the 1.0 kcal/mol increase obtained from QM/MM calculations for this analogue. Our theoretical calculations further suggest the hydrogen bond deletion in (OL8)4OT results in a rearrangement of the substrate in the active site. In this rearrangement, an ordered water molecule loses its ability to stabilize the transition state (TS), and Arg-61 gains the ability to stabilize the TS. The predicted role of Arg-61 in (OL8)4OT catalysis was confirmed in kinetic experiments with an analogue of (OL8)4OT containing an Arg to Ala mutation at position 61.


Assuntos
Isomerases/química , Isomerases/metabolismo , Teoria Quântica , Arginina/genética , Arginina/metabolismo , Sítios de Ligação , Catálise , Ligação de Hidrogênio , Isomerases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Biossíntese Peptídica , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa