Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 11: 1359715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596691

RESUMO

Background: A reduced left atrial (LA) strain correlates with the presence of atrial fibrillation (AF). Conventional atrial strain analysis uses two-dimensional (2D) imaging, which is, however, limited by atrial foreshortening and an underestimation of through-plane motion. Retrospective gated computed tomography (RGCT) produces high-fidelity three-dimensional (3D) images of the cardiac anatomy throughout the cardiac cycle that can be used for estimating 3D mechanics. Its feasibility for LA strain measurement, however, is understudied. Aim: The aim of this study is to develop and apply a novel workflow to estimate 3D LA motion and calculate the strain from RGCT imaging. The utility of global and regional strains to separate heart failure in patients with reduced ejection fraction (HFrEF) with and without AF is investigated. Methods: A cohort of 30 HFrEF patients with (n = 9) and without (n = 21) AF underwent RGCT prior to cardiac resynchronisation therapy. The temporal sparse free form deformation image registration method was optimised for LA feature tracking in RGCT images and used to estimate 3D LA endocardial motion. The area and fibre reservoir strains were calculated over the LA body. Universal atrial coordinates and a human atrial fibre atlas enabled the regional strain calculation and the fibre strain calculation along the local myofibre orientation, respectively. Results: It was found that global reservoir strains were significantly reduced in the HFrEF + AF group patients compared with the HFrEF-only group patients (area strain: 11.2 ± 4.8% vs. 25.3 ± 12.6%, P = 0.001; fibre strain: 4.5 ± 2.0% vs. 15.2 ± 8.8%, P = 0.001), with HFrEF + AF patients having a greater regional reservoir strain dyssynchrony. All regional reservoir strains were reduced in the HFrEF + AF patient group, in whom the inferior wall strains exhibited the most significant differences. The global reservoir fibre strain and LA volume + posterior wall reservoir fibre strain exceeded LA volume alone and 2D global longitudinal strain (GLS) for AF classification (area-under-the-curve: global reservoir fibre strain: 0.94 ± 0.02, LA volume + posterior wall reservoir fibre strain: 0.95 ± 0.02, LA volume: 0.89 ± 0.03, 2D GLS: 0.90 ± 0.03). Conclusion: RGCT enables 3D LA motion estimation and strain calculation that outperforms 2D strain metrics and LA enlargement for AF classification. Differences in regional LA strain could reflect regional myocardial properties such as atrial fibrosis burden.

2.
Prog Biomed Eng (Bristol) ; 5(3): 032004, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37360227

RESUMO

Computational models of the heart are now being used to assess the effectiveness and feasibility of interventions through in-silico clinical trials (ISCTs). As the adoption and acceptance of ISCTs increases, best practices for reporting the methodology and analysing the results will emerge. Focusing in the area of cardiology, we aim to evaluate the types of ISCTs, their analysis methods and their reporting standards. To this end, we conducted a systematic review of cardiac ISCTs over the period of 1 January 2012-1 January 2022, following the preferred reporting items for systematic reviews and meta-analysis (PRISMA). We considered cardiac ISCTs of human patient cohorts, and excluded studies of single individuals and those in which models were used to guide a procedure without comparing against a control group. We identified 36 publications that described cardiac ISCTs, with most of the studies coming from the US and the UK. In 75% of the studies, a validation step was performed, although the specific type of validation varied between the studies. ANSYS FLUENT was the most commonly used software in 19% of ISCTs. The specific software used was not reported in 14% of the studies. Unlike clinical trials, we found a lack of consistent reporting of patient demographics, with 28% of the studies not reporting them. Uncertainty quantification was limited, with sensitivity analysis performed in only 19% of the studies. In 97% of the ISCTs, no link was provided to provide easy access to the data or models used in the study. There was no consistent naming of study types with a wide range of studies that could potentially be considered ISCTs. There is a clear need for community agreement on minimal reporting standards on patient demographics, accepted standards for ISCT cohort quality control, uncertainty quantification, and increased model and data sharing.

3.
Comput Biol Med ; 162: 107009, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301099

RESUMO

This work presents an open-source software pipeline to create patient-specific left atrial models with fibre orientations and a fibrDEFAULTosis map, suitable for electrophysiology simulations, and quantifies the intra and inter observer reproducibility of the model creation. The semi-automatic pipeline takes as input a contrast enhanced magnetic resonance angiogram, and a late gadolinium enhanced (LGE) contrast magnetic resonance (CMR). Five operators were allocated 20 cases each from a set of 50 CMR datasets to create a total of 100 models to evaluate inter and intra-operator variability. Each output model consisted of: (1) a labelled surface mesh open at the pulmonary veins and mitral valve, (2) fibre orientations mapped from a diffusion tensor MRI (DTMRI) human atlas, (3) fibrosis map extracted from the LGE-CMR scan, and (4) simulation of local activation time (LAT) and phase singularity (PS) mapping. Reproducibility in our pipeline was evaluated by comparing agreement in shape of the output meshes, fibrosis distribution in the left atrial body, and fibre orientations. Reproducibility in simulations outputs was evaluated in the LAT maps by comparing the total activation times, and the mean conduction velocity (CV). PS maps were compared with the structural similarity index measure (SSIM). The users processed in total 60 cases for inter and 40 cases for intra-operator variability. Our workflow allows a single model to be created in 16.72 ± 12.25 min. Similarity was measured with shape, percentage of fibres oriented in the same direction, and intra-class correlation coefficient (ICC) for the fibrosis calculation. Shape differed noticeably only with users' selection of the mitral valve and the length of the pulmonary veins from the ostia to the distal end; fibrosis agreement was high, with ICC of 0.909 (inter) and 0.999 (intra); fibre orientation agreement was high with 60.63% (inter) and 71.77% (intra). The LAT showed good agreement, where the median ± IQR of the absolute difference of the total activation times was 2.02 ± 2.45 ms for inter, and 1.37 ± 2.45 ms for intra. Also, the average ± sd of the mean CV difference was -0.00404 ± 0.0155 m/s for inter, and 0.0021 ± 0.0115 m/s for intra. Finally, the PS maps showed a moderately good agreement in SSIM for inter and intra, where the mean ± sd SSIM for inter and intra were 0.648 ± 0.21 and 0.608 ± 0.15, respectively. Although we found notable differences in the models, as a consequence of user input, our tests show that the uncertainty caused by both inter and intra-operator variability is comparable with uncertainty due to estimated fibres, and image resolution accuracy of segmentation tools.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico por imagem , Reprodutibilidade dos Testes , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/patologia , Imageamento por Ressonância Magnética/métodos , Fibrose , Valor Preditivo dos Testes
4.
Eur Heart J Cardiovasc Imaging ; 23(1): 31-41, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34747450

RESUMO

Atrial arrhythmias, including atrial fibrillation and atrial flutter, may be treated through catheter ablation. The process of atrial arrhythmia catheter ablation, which includes patient selection, pre-procedural planning, intra-procedural guidance, and post-procedural assessment, is typically characterized by the use of several imaging modalities to sequentially inform key clinical decisions. Increasingly, advanced imaging modalities are processed via specialized image analysis techniques and combined with intra-procedural electrical measurements to inform treatment approaches. Here, we review the use of multimodality imaging for left atrial ablation procedures. The article first outlines how imaging modalities are routinely used in the peri-ablation period. We then describe how advanced imaging techniques may inform patient selection for ablation and ablation targets themselves. Ongoing research directions for improving catheter ablation outcomes by using imaging combined with advanced analyses for personalization of ablation targets are discussed, together with approaches for their integration in the standard clinical environment. Finally, we describe future research areas with the potential to improve catheter ablation outcomes.


Assuntos
Fibrilação Atrial , Flutter Atrial , Ablação por Cateter , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Flutter Atrial/diagnóstico por imagem , Flutter Atrial/cirurgia , Ablação por Cateter/métodos , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Humanos , Imagem Multimodal , Resultado do Tratamento
5.
Funct Imaging Model Heart ; 12738: 71-83, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35727914

RESUMO

Retrospective gated cardiac computed tomography (CCT) images can provide high contrast and resolution images of the heart throughout the cardiac cycle. Feature tracking in retrospective CCT images using the temporal sparse free-form deformations (TSFFDs) registration method has previously been optimised for the left ventricle (LV). However, there is limited work on optimising nonrigid registration methods for feature tracking in the left atria (LA). This paper systematically optimises the sparsity weight (SW) and bending energy (BE) as two hyperparameters of the TSFFD method to track the LA endocardium from end-diastole (ED) to end-systole (ES) using 10-frame retrospective gated CCT images. The effect of two different control point (CP) grid resolutions was also investigated. TSFFD optimisation was achieved using the average surface distance (ASD), directed Hausdorff distance (DHD) and Dice score between the registered and ground truth surface meshes and segmentations at ES. For baseline comparison, the configuration optimised for LV feature tracking gave errors across the cohort of 0.826 ± 0.172mm ASD, 5.882 ± 1.524mm DHD, and 0.912 ± 0.033 Dice score. Optimising the SW and BE hyperparameters improved the TSFFD performance in tracking LA features, with case specific optimisations giving errors across the cohort of 0.750 ± 0.144mm ASD, 5.096 ± 1.246mm DHD, and 0.919 ± 0.029 Dice score. Increasing the CP resolution and optimising the SW and BE further improved tracking performance, with case specific optimisation errors of 0.372 ± 0.051mm ASD, 2.739 ± 0.843mm DHD and 0.949 ± 0.018 Dice score across the cohort. We therefore show LA feature tracking using TSFFDs is improved through a chamber-specific optimised configuration.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa