Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Plant ; 172(2): 869-884, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33421143

RESUMO

Salicylic acid (SA) is an interesting messenger in plant metabolism that modulates multiple pathways, including the antioxidant defence pathway, and stimulates anatomical structures essential to carbon dioxide fixation during the photosynthetic process. The aim of this research was to determine whether pre-treatment with exogenous SA can alleviate the deleterious effects induced by water deficit on production components, biomass and gas exchange, measuring reactive oxygen species, antioxidant enzymes, variables connected to photosynthetic machinery, anatomical responses, and agro-morphological traits in tomato plants under water deficit. The experiment used a factorial design with four treatments, including two water conditions (control and water deficit) and two salicylic acid concentrations (0 and 0.1 mM salicylic acid). Water deficit negatively impacted the biomass and fruit number of tomato plants. Pre-treatment using 0.1 mM SA in plants submitted to water restriction induced increments in fruit number, weight, and biomass. These results were related to the protective role triggered by this substance, stimulating superoxide dismutase (27.07%), catalase (17.81%), ascorbate peroxidase (50.52%), and peroxidase (10.81%) as well as reducing the cell damage (malondialdehyde and electrolyte leakage) caused by superoxide and hydrogen peroxide. Simultaneously, application of SA improved the net photosynthetic rate (84.55%) and water-use efficiency (65.00%) of stressed plants in which these factors are connected to anatomical benefits, as verified by stomatal density, palisade and spongy parenchyma, combined with improved performance linked to photosystem II.


Assuntos
Ácido Salicílico , Solanum lycopersicum , Antioxidantes , Biomassa , Peróxido de Hidrogênio , Oxirredução , Ácido Salicílico/farmacologia , Água
2.
Environ Pollut ; 280: 116992, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33784567

RESUMO

Lead (Pb) is an environmental pollutant that negatively affects rice plants, causing damage to the root system and chloroplast structures, as well as reducing growth. 24-Epibrasnolide (EBR) is a plant growth regulator with a high capacity to modulate antioxidant metabolism. The objective of this research was to investigate whether exogenous EBR application can mitigate oxidative damage in Pb-stressed rice plants, measure anatomical structures and evaluate physiological and biochemical responses connected with redox metabolism. The experiment was randomized with four treatments, including two lead treatments (0 and 200 µM PbCl2, described as - Pb and + Pb, respectively) and two treatments with brassinosteroid (0 and 100 nM EBR, described as - EBR and + EBR, respectively). The results revealed that plants exposed to Pb suffered significant disturbances, but the EBR alleviated the negative interferences, as confirmed by the improvements in the root structures and antioxidant system. This steroid stimulated the root structures, increasing the epidermis thickness (26%) and aerenchyma area (50%), resulting in higher protection of this tissue against Pb2+ ions. Additionally, EBR promoted significant increases in superoxide dismutase (26%), catalase (24%), ascorbate peroxidase (54%) and peroxidase (63%) enzymes, reducing oxidative stress on the photosynthetic machinery in Pb-stressed plants. This research proved that EBR mitigates the toxic effects generated by Pb in rice plants.


Assuntos
Brassinosteroides , Oryza , Antioxidantes , Brassinosteroides/metabolismo , Chumbo/toxicidade , Oryza/metabolismo , Estresse Oxidativo , Folhas de Planta/metabolismo , Esteroides Heterocíclicos
3.
Plant Signal Behav ; 15(11): 1805885, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32787497

RESUMO

Plants exhibit several restrictions under waterlogging conditions, including stomatal limitations, negative impacts on gas exchange, lower nutrient uptake and reduced growth. 24-epibrassinolide (EBR) is a polyhydroxylated steroid, with the advantages to be a natural and biodegradable molecule, presenting beneficial roles in metabolic and physiological processes. The aim of this research is to investigate whether EBR can protect soybean plants against damage caused by waterlogging and evaluate the responses associated with the root and leaf anatomy, photosynthetic machinery and biomass. This study used a completely randomized factorial design with two water conditions (control and waterlogging) and three concentrations of 24-epibrassinolide (0, 5 and 10 nM EBR). This steroid stimulated the activities of enzymes linked to the antioxidant system and resulted in minor damage to the chloroplast membranes. EBR maximized the efficiency of photosystem II and improved the gas exchange, which was explained by the higher density and index of the stomata in addition to the increased chlorophyll content and electron transport rate. In root structures, EBR mitigated the impact of waterlogging on vascular cylinder and metaxilem, suggesting maintenance and functions of these structures in plants stressed.


Assuntos
Brassinosteroides/farmacologia , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Esteroides Heterocíclicos/farmacologia , Biomassa , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa