Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373206

RESUMO

For targeted protein panels, the ability to specifically assay post-translational modifications (PTMs) in a quantitative, sensitive, and straightforward manner would substantially advance biological and pharmacological studies. The present study highlights the effectiveness of the Affi-BAMS™ epitope-directed affinity bead capture/MALDI MS platform for quantitatively defining complex PTM marks of H3 and H4 histones. Using H3 and H4 histone peptides and isotopically labelled derivatives, this affinity bead and MALDI MS platform achieves a range of >3 orders of magnitude with a technical precision CV of <5%. Using nuclear cellular lysates, Affi-BAMS PTM-peptide capture resolves heterogeneous histone N-terminal PTMs with as little as 100 µg of starting material. In an HDAC inhibitor and MCF7 cell line model, the ability to monitor dynamic histone H3 acetylation and methylation events is further demonstrated (including SILAC quantification). Affi-BAMS (and its capacity for the multiplexing of samples and target PTM-proteins) thus provides a uniquely efficient and effective approach for analyzing dynamic epigenetic histone marks, which is critical for the regulation of chromatin structure and gene expression.


Assuntos
Histonas , Proteômica , Histonas/metabolismo , Espectrometria de Massas em Tandem , Processamento de Proteína Pós-Traducional , Código das Histonas , Peptídeos/metabolismo , Acetilação
2.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188029

RESUMO

The ability to quantitatively probe diverse panels of proteins and their post-translational modifications (PTMs) across multiple samples would aid a broad spectrum of biological, biochemical and pharmacological studies. We report a novel, microarray analytical technology that combines immuno-affinity capture with Matrix Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS), which is capable of supporting highly multiplexed, targeted proteomic assays. Termed "Affinity-Bead Assisted Mass Spectrometry" (Affi-BAMS), this LC-free technology enables development of highly specific and customizable assay panels for simultaneous profiling of multiple proteins and PTMs. While affinity beads have been used previously in combination with MS, the Affi-BAMS workflow uses enrichment on a single bead that contains one type of antibody, generally capturing a single analyte (protein or PTM) while having enough binding capacity to enable quantification within approximately 3 orders of magnitude. The multiplexing capability is achieved by combining Affi-BAMS beads with different protein specificities. To enable screening of bead-captured analytes by MS, we further developed a novel method of performing spatially localized elution of targets from individual beads arrayed on a microscope slide. The resulting arrays of micro spots contain highly concentrated analytes localized within 0.5 mm diameter spots that can be directly measured using MALDI MS. While both intact proteins and protein fragments can be monitored by Affi-BAMS, we initially focused on applying this technology for bottom-up proteomics to enable screening of hundreds of samples per day by combining the robust magnetic bead-based workflow with the high throughput nature of MALDI MS acquisition. To demonstrate the variety of applications and robustness of Affi-BAMS, several studies are presented that focus on the response of 4EBP1, RPS6, ERK1/ERK2, mTOR, Histone H3 and C-MET to stimuli including rapamycin, H2O2, EPO, SU11274, Staurosporine and Vorinostat.


Assuntos
Análise em Microsséries/métodos , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cromatina , Humanos , Peróxido de Hidrogênio , Isótopos , Peptídeo Hidrolases/química , Mutação Puntual , Processamento de Proteína Pós-Traducional , Proteínas/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transdução de Sinais
3.
Mol Cell Proteomics ; 15(2): 692-702, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26635363

RESUMO

A robust method was developed and optimized for enrichment and quantitative analysis of posttranslational modifications (PTMs) in serum/plasma samples by combining immunoaffinity purification and LC-MS/MS without depletion of abundant proteins. The method was used to survey serum samples of patients with acute myeloid leukemia (AML), breast cancer (BC), and nonsmall cell lung cancer (NSCLC). Peptides were identified from serum samples containing phosphorylation, acetylation, lysine methylation, and arginine methylation. Of the PTMs identified, lysine acetylation (AcK) and arginine mono-methylation (Rme) were more prevalent than other PTMs. Label-free quantitative analysis of AcK and Rme peptides was performed for sera from AML, BC, and NSCLC patients. Several AcK and Rme sites showed distinct abundance distribution patterns across the three cancer types. The identification and quantification of posttranslationally modified peptides in serum samples reported here can be used for patient profiling and biomarker discovery research.


Assuntos
Neoplasias da Mama/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/biossíntese , Acetilação , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Cromatografia Líquida , Feminino , Humanos , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/patologia , Metilação , Proteínas de Neoplasias/sangue , Processamento de Proteína Pós-Traducional/genética , Proteômica/métodos , Espectrometria de Massas em Tandem
4.
Proc Natl Acad Sci U S A ; 112(42): E5679-88, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438848

RESUMO

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) govern cellular homeostasis by inducing signaling. H2O2 modulates the activity of phosphatases and many other signaling molecules through oxidation of critical cysteine residues, which led to the notion that initiation of ROS signaling is broad and nonspecific, and thus fundamentally distinct from other signaling pathways. Here, we report that H2O2 signaling bears hallmarks of a regular signal transduction cascade. It is controlled by hierarchical signaling events resulting in a focused response as the results place the mitochondrial respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn upstream of tyrosine-protein kinase SYK (Syk), and Syk upstream of numerous targets involved in signaling, transcription, translation, metabolism, and cell cycle regulation. The active mediators of H2O2 signaling colocalize as H2O2 induces mitochondria-associated Lyn and Syk phosphorylation, and a pool of Lyn and Syk reside in the mitochondrial intermembrane space. Finally, the same intermediaries control the signaling response in tissues and species responsive to H2O2 as the respiratory chain, Lyn, and Syk were similarly required for H2O2 signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Consistent with a broad role, the Syk pathway is coexpressed across tissues, is of early metazoan origin, and displays evidence of evolutionary constraint in the human. These results suggest that H2O2 signaling is under control of a signal transduction pathway that links the respiratory chain to the mitochondrial intermembrane space-localized, ubiquitous, and ancient Syk pathway in hematopoietic and nonhematopoietic cells.


Assuntos
Transporte de Elétrons , Peróxido de Hidrogênio/metabolismo , Membranas Mitocondriais/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Galinhas , Ativação Enzimática , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Quinase Syk , Tirosina/metabolismo
5.
Mol Cell Proteomics ; 14(9): 2429-40, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25953088

RESUMO

Introduction of antibodies specific for acetylated lysine has significantly improved the detection of endogenous acetylation sites by mass spectrometry. Here, we describe a new, commercially available mixture of anti-lysine acetylation (Kac) antibodies and show its utility for in-depth profiling of the acetylome. Specifically, seven complementary monoclones with high specificity for Kac were combined into a final anti-Kac reagent which results in at least a twofold increase in identification of Kac peptides over a commonly used Kac antibody. We outline optimal antibody usage conditions, effective offline basic reversed phase separation, and use of state-of-the-art LC-MS technology for achieving unprecedented coverage of the acetylome. The methods were applied to quantify acetylation sites in suberoylanilide hydroxamic acid-treated Jurkat cells. Over 10,000 Kac peptides from over 3000 Kac proteins were quantified from a single stable isotope labeling by amino acids in cell culture labeled sample using 7.5 mg of peptide input per state. This constitutes the deepest coverage of acetylation sites in quantitative experiments obtained to-date. The approach was also applied to breast tumor xenograft samples using isobaric mass tag labeling of peptides (iTRAQ4, TMT6 and TMT10-plex reagents) for quantification. Greater than 6700 Kac peptides from over 2300 Kac proteins were quantified using 1 mg of tumor protein per iTRAQ 4-plex channel. The novel reagents and methods we describe here enable quantitative, global acetylome analyses with depth and sensitivity approaching that obtained for other well-studied post-translational modifications such as phosphorylation and ubiquitylation, and should have widespread application in biological and clinical studies employing mass spectrometry-based proteomics.


Assuntos
Anticorpos Monoclonais/metabolismo , Fígado/metabolismo , Lisina/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Proteômica/métodos , Acetilação , Animais , Feminino , Humanos , Células Jurkat , Lisina/imunologia , Espectrometria de Massas/métodos , Camundongos , Processamento de Proteína Pós-Traducional , Fluxo de Trabalho
6.
Mol Cell Proteomics ; 13(1): 372-87, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24129315

RESUMO

Protein methylation is a common posttranslational modification that mostly occurs on arginine and lysine residues. Arginine methylation has been reported to regulate RNA processing, gene transcription, DNA damage repair, protein translocation, and signal transduction. Lysine methylation is best known to regulate histone function and is involved in epigenetic regulation of gene transcription. To better study protein methylation, we have developed highly specific antibodies against monomethyl arginine; asymmetric dimethyl arginine; and monomethyl, dimethyl, and trimethyl lysine motifs. These antibodies were used to perform immunoaffinity purification of methyl peptides followed by LC-MS/MS analysis to identify and quantify arginine and lysine methylation sites in several model studies. Overall, we identified over 1000 arginine methylation sites in human cell line and mouse tissues, and ∼160 lysine methylation sites in human cell line HCT116. The number of methylation sites identified in this study exceeds those found in the literature to date. Detailed analysis of arginine-methylated proteins observed in mouse brain compared with those found in mouse embryo shows a tissue-specific distribution of arginine methylation, and extends the types of proteins that are known to be arginine methylated to include many new protein types. Many arginine-methylated proteins that we identified from the brain, including receptors, ion channels, transporters, and vesicle proteins, are involved in synaptic transmission, whereas the most abundant methylated proteins identified from mouse embryo are transcriptional regulators and RNA processing proteins.


Assuntos
Arginina/metabolismo , Encéfalo/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Motivos de Aminoácidos/genética , Animais , Arginina/genética , Cromatografia Líquida , Células HCT116 , Humanos , Lisina/genética , Metilação , Camundongos , Espectrometria de Massas em Tandem
7.
Mol Cell Proteomics ; 12(11): 3350-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23882029

RESUMO

In the past decade, mass-spectrometry-based methods have emerged for the quantitative profiling of dynamic changes in protein phosphorylation, allowing the behavior of thousands of phosphorylation sites to be monitored in a single experiment. However, when one is interested in specific signaling pathways, such shotgun methodologies are not ideal because they lack selectivity and are not cost and time efficient with respect to instrument and data analysis time. Here we evaluate and explore a peptide-centric antibody generated to selectively enrich peptides containing the cAMP-dependent protein kinase (PKA) consensus motif. This targeted phosphoproteomic strategy is used to profile temporal quantitative changes of potential PKA substrates in Jurkat T lymphocytes upon prostaglandin E2 (PGE2) stimulation, which increases intracellular cAMP, activating PKA. Our method combines ultra-high-specificity motif-based immunoaffinity purification with cost-efficient stable isotope dimethyl labeling. We identified 655 phosphopeptides, of which 642 (i.e. 98%) contained the consensus motif [R/K][R/K/X]X[pS/pT]. When our data were compared with a large-scale Jurkat T-lymphocyte phosphoproteomics dataset containing more than 10,500 phosphosites, a minimal overlap of 0.2% was observed. This stresses the need for such targeted analyses when the interest is in a particular kinase. Our data provide a resource of likely substrates of PKA, and potentially some substrates of closely related kinases. Network analysis revealed that about half of the observed substrates have been implicated in cAMP-induced signaling. Still, the other half of the here-identified substrates have been less well characterized, representing a valuable resource for future research.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosfoproteínas/metabolismo , Proteômica/métodos , Motivos de Aminoácidos , Cromatografia Líquida/métodos , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Humanos , Imunoprecipitação/métodos , Células Jurkat , Fosfoproteínas/química , Fosfoproteínas/genética , Mapas de Interação de Proteínas , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato , Espectrometria de Massas em Tandem/métodos
8.
Mol Cell Proteomics ; 12(8): 2070-80, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23608596

RESUMO

Although K-Ras, Cdc42, and PAK4 signaling are commonly deregulated in cancer, only a few studies have sought to comprehensively examine the spectrum of phosphorylation-mediated signaling downstream of each of these key signaling nodes. In this study, we completed a label-free quantitative analysis of oncogenic K-Ras, activated Cdc42, and PAK4-mediated phosphorylation signaling, and report relative quantitation of 2152 phosphorylated peptides on 1062 proteins. We define the overlap in phosphopeptides regulated by K-Ras, Cdc42, and PAK4, and find that perturbation of these signaling components affects phosphoproteins associated with microtubule depolymerization, cytoskeletal organization, and the cell cycle. These findings provide a resource for future studies to characterize novel targets of oncogenic K-Ras signaling and validate biomarkers of PAK4 inhibition.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Camundongos , Células NIH 3T3 , Fosfopeptídeos/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteômica , Transdução de Sinais , Quinases Ativadas por p21/genética
9.
Mol Cell Proteomics ; 11(5): 187-201, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22322096

RESUMO

Proteomic studies of post-translational modifications by metal affinity or antibody-based methods often employ data-dependent analysis, providing rich data sets that consist of randomly sampled identified peptides because of the dynamic response of the mass spectrometer. This can complicate the primary goal of programs for drug development, mutational analysis, and kinase profiling studies, which is to monitor how multiple nodes of known, critical signaling pathways are affected by a variety of treatment conditions. Cell Signaling Technology has developed an immunoaffinity-based LC-MS/MS method called PTMScan Direct for multiplexed analysis of these important signaling proteins. PTMScan Direct enables the identification and quantification of hundreds of peptides derived from specific proteins in signaling pathways or specific protein types. Cell lines, tissues, or xenografts can be used as starting material. PTMScan Direct is compatible with both SILAC and label-free quantification. Current PTMScan Direct reagents target key nodes of many signaling pathways (PTMScan Direct: Multipathway), serine/threonine kinases, tyrosine kinases, and the Akt/PI3K pathway. Validation of each reagent includes score filtering of MS/MS assignments, filtering by identification of peptides derived from expected targets, identification of peptides homologous to expected targets, minimum signal intensity of peptide ions, and dependence upon the presence of the reagent itself compared with a negative control. The Multipathway reagent was used to study sensitivity of human cancer cell lines to receptor tyrosine kinase inhibitors and showed consistent results with previously published studies. The Ser/Thr kinase reagent was used to compare relative levels of kinase-derived phosphopeptides in mouse liver, brain, and embryo, showing tissue-specific activity of many kinases including Akt and PKC family members. PTMScan Direct will be a powerful quantitative method for elucidation of changes in signaling in a wide array of experimental systems, combining the specificity of traditional biochemical methods with the high number of data points and dynamic range of proteomic methods.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Fragmentos de Peptídeos/química , Processamento de Proteína Pós-Traducional , Animais , Encéfalo/metabolismo , Linhagem Celular , Cromatografia de Afinidade , Cromatografia Líquida , Embrião de Mamíferos/metabolismo , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/isolamento & purificação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/isolamento & purificação , Mapeamento de Peptídeos/métodos , Fosfoproteínas/química , Fosfoproteínas/isolamento & purificação , Fosfoproteínas/metabolismo , Fosforilação , Mapas de Interação de Proteínas , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/isolamento & purificação , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Espectrometria de Massas em Tandem
10.
Blood Adv ; 7(23): 7304-7318, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37756546

RESUMO

Germ line mutations in the RUNX1 gene cause familial platelet disorder (FPD), an inherited disease associated with lifetime risk to hematopoietic malignancies (HM). Patients with FPD frequently show clonal expansion of premalignant cells preceding HM onset. Despite the extensive studies on the role of RUNX1 in hematopoiesis, its function in the premalignant bone marrow (BM) is not well-understood. Here, we characterized the hematopoietic progenitor compartments using a mouse strain carrying an FPD-associated mutation, Runx1R188Q. Immunophenotypic analysis showed an increase in the number of hematopoietic stem and progenitor cells (HSPCs) in the Runx1R188Q/+ mice. However, the comparison of Sca-1 and CD86 markers suggested that Sca-1 expression may result from systemic inflammation. Cytokine profiling confirmed the dysregulation of interferon-response cytokines in the BM. Furthermore, the expression of CD48, another inflammation-response protein, was also increased in Runx1R188Q/+ HSPCs. The DNA-damage response activity of Runx1R188Q/+ hematopoietic progenitor cells was defective in vitro, suggesting that Runx1R188Q may promote genomic instability. The differentiation of long-term repopulating HSCs was reduced in Runx1R188Q/+ recipient mice. Furthermore, we found that Runx1R188Q/+ HSPCs outcompete their wild-type counterparts in bidirectional repopulation assays, and that the genetic makeup of recipient mice did not significantly affect the clonal dynamics under this setting. Finally, we demonstrate that Runx1R188Q predisposes to HM in cooperation with somatic mutations found in FPDHM, using 3 mouse models. These studies establish a novel murine FPDHM model and demonstrate that germ line Runx1 mutations induce a premalignant phenotype marked by BM inflammation, selective expansion capacity, defective DNA-damage response, and predisposition to HM.


Assuntos
Transtornos Plaquetários , Neoplasias Hematológicas , Animais , Camundongos , Humanos , Mutação em Linhagem Germinativa , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Suscetibilidade a Doenças , Transtornos Plaquetários/genética , Inflamação/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/complicações , DNA
11.
J Biol Chem ; 286(48): 41530-41538, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21987572

RESUMO

Protein ubiquitination is a key regulatory process essential to life at a cellular level; significant efforts have been made to identify ubiquitinated proteins through proteomics studies, but the level of success has not reached that of heavily studied post-translational modifications, such as phosphorylation. HRD1, an E3 ubiquitin ligase, has been implicated in rheumatoid arthritis, but no disease-relevant substrates have been identified. To identify these substrates, we have taken both peptide and protein level approaches to enrich for ubiquitinated proteins in the presence and absence of HRD1. At the protein level, a two-step strategy was taken using cells expressing His(6)-tagged ubiquitin, enriching proteins first based on their ubiquitination and second based on the His tag with protein identification by LC-MS/MS. Application of this method resulted in identification and quantification of more than 400 ubiquitinated proteins, a fraction of which were found to be sensitive to HRD1 and were therefore deemed candidate substrates. In a second approach, ubiquitinated peptides were enriched after tryptic digestion by peptide immunoprecipitation using an antibody specific for the diglycine-labeled internal lysine residue indicative of protein ubiquitination, with peptides and ubiquitination sites identified by LC-MS/MS. Peptide immunoprecipitation resulted in identification of over 1800 ubiquitinated peptides on over 900 proteins in each study, with several proteins emerging as sensitive to HRD1 levels. Notably, significant overlap exists between the HRD1 substrates identified by the protein-based and the peptide-based strategies, with clear cross-validation apparent both qualitatively and quantitatively, demonstrating the effectiveness of both strategies and furthering our understanding of HRD1 biology.


Assuntos
Processamento de Proteína Pós-Traducional/fisiologia , Proteoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Artrite Reumatoide/metabolismo , Células HeLa , Humanos , Fosforilação/fisiologia , Proteômica/métodos
12.
Int J Mol Sci ; 14(1): 286-307, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23344034

RESUMO

Traditional methods for analysis of peptides using liquid chromatography and tandem mass spectrometry (LC-MS/MS) lack the specificity to comprehensively monitor specific biological processes due to the inherent duty cycle limitations of the MS instrument and the stochastic nature of the analytical platform. PTMScan Direct is a novel, antibody-based method that allows quantitative LC-MS/MS profiling of specific peptides from proteins that reside in the same signaling pathway. New PTMScan Direct reagents have been produced that target peptides from proteins involved in DNA Damage/Cell Cycle and Apoptosis/Autophagy pathways. Together, the reagents provide access to 438 sites on 237 proteins in these signaling cascades. These reagents have been used to profile the response to UV damage of DNA in human cell lines. UV damage was shown to activate canonical DNA damage response pathways through ATM/ATR-dependent signaling, stress response pathways and induce the initiation of apoptosis, as assessed by an increase in the abundance of peptides corresponding to cleaved, activated caspases. These data demonstrate the utility of PTMScan Direct as a multiplexed assay for profiling specific cellular responses to various stimuli, such as UV damage of DNA.


Assuntos
Apoptose/efeitos da radiação , Cromatografia Líquida/métodos , Dano ao DNA , Processamento de Proteína Pós-Traducional/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Espectrometria de Massas em Tandem/métodos , Raios Ultravioleta , Sequência de Aminoácidos , Autofagia/efeitos da radiação , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Humanos , Indicadores e Reagentes , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Mapeamento de Interação de Proteínas
13.
Proteomics ; 9(6): 1696-719, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19294629

RESUMO

A novel database search algorithm is presented for the qualitative identification of proteins over a wide dynamic range, both in simple and complex biological samples. The algorithm has been designed for the analysis of data originating from data independent acquisitions, whereby multiple precursor ions are fragmented simultaneously. Measurements used by the algorithm include retention time, ion intensities, charge state, and accurate masses on both precursor and product ions from LC-MS data. The search algorithm uses an iterative process whereby each iteration incrementally increases the selectivity, specificity, and sensitivity of the overall strategy. Increased specificity is obtained by utilizing a subset database search approach, whereby for each subsequent stage of the search, only those peptides from securely identified proteins are queried. Tentative peptide and protein identifications are ranked and scored by their relative correlation to a number of models of known and empirically derived physicochemical attributes of proteins and peptides. In addition, the algorithm utilizes decoy database techniques for automatically determining the false positive identification rates. The search algorithm has been tested by comparing the search results from a four-protein mixture, the same four-protein mixture spiked into a complex biological background, and a variety of other "system" type protein digest mixtures. The method was validated independently by data dependent methods, while concurrently relying on replication and selectivity. Comparisons were also performed with other commercially and publicly available peptide fragmentation search algorithms. The presented results demonstrate the ability to correctly identify peptides and proteins from data independent acquisition strategies with high sensitivity and specificity. They also illustrate a more comprehensive analysis of the samples studied; providing approximately 20% more protein identifications, compared to a more conventional data directed approach using the same identification criteria, with a concurrent increase in both sequence coverage and the number of modified peptides.


Assuntos
Misturas Complexas/análise , Bases de Dados de Proteínas , Peptídeos/análise , Algoritmos , Sequência de Aminoácidos , Dados de Sequência Molecular , Peso Molecular , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteoma/análise , Curva ROC , Fatores de Tempo
14.
Proteomics ; 9(6): 1683-95, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19294628

RESUMO

The detection, correlation, and comparison of peptide and product ions from a data independent LC-MS acquisition strategy with data dependent LC-MS/MS is described. The data independent mode of acquisition differs from an LC-MS/MS data acquisition since no ion transmission window is applied with the first mass analyzer prior to collision induced disassociation. Alternating the energy applied to the collision cell, between low and elevated energy, on a scan-to-scan basis, provides accurate mass precursor and associated product ion spectra from every ion above the LOD of the mass spectrometer. The method therefore provides a near 100% duty cycle, with an inherent increase in signal intensity due to the fact that both precursor and product ion data are collected on all isotopes of every charge-state across the entire chromatographic peak width. The correlation of product to precursor ions, after deconvolution, is achieved by using reconstructed retention time apices and chromatographic peak shapes. Presented are the results from the comparison of a simple four protein mixture, in the presence and absence of an enzymatically digested protein extract from Escherichia coli. The samples were run in triplicate by both data dependant analysis (DDA) LC-MS/MS and data-independent, alternate scanning LC-MS. The detection and identification of precursor and product ions from the combined DDA search results of the four protein mixture were used for comparison to all other data. Each individual set of data-independent LC-MS data provides a more comprehensive set of detected ions than the combined peptide identifications from the DDA LC-MS/MS experiments. In the presence of the complex E. coli background, over 90% of the monoisotopic masses from the combined LC-MS/MS identifications were detected at the appropriate retention time. Moreover, the fragmentation pattern and number of associated elevated energy product ions in each replicate experiment was found to be very similar to the DDA identifications. In the case of the corresponding individual DDA LC-MS/MS experiment, 43% of the possible detectable peptides of interest were identified. The presented data illustrates that the time-aligned data from data-independent alternate scanning LC-MS experiments is highly comparable to the data obtained via DDA. The obtained information can therefore be effectively and correctly deconvolved to correlate product ions with parent precursor ions. The ability to generate precursor-product ion tables from this information and subsequently identify the correct parent precursor peptide will be illustrated in a companion manuscript.


Assuntos
Espectrometria de Massas , Peptídeos/análise , Sequência de Aminoácidos , Cromatografia Líquida , Dados de Sequência Molecular , Peptídeos/química , Proteínas/análise , Reprodutibilidade dos Testes , Fatores de Tempo , Tripsina/metabolismo
15.
Proteomes ; 3(3): 160-183, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28248267

RESUMO

Gaining insight into normal cellular signaling and disease biology is a critical goal of proteomic analyses. The ability to perform these studies successfully to extract the maximum value and discovery of biologically relevant candidate biomarkers is therefore of primary importance. Many successful studies in the past have focused on total proteome analysis (changes at the protein level) combined with phosphorylation analysis by metal affinity enrichment (changes at the PTM level). Here, we use the gastric carcinoma cell line MKN-45 treated with the c-Met inhibitor SU11274 and PKC inhibitor staurosporine to investigate the most efficient and most comprehensive strategies for both total protein and PTM analysis. Under the conditions used, total protein analysis yielded few changes in response to either compound, while analysis of phosphorylation identified thousands of sites that changed differentially between the two treatments. Both metal affinity and antibody-based enrichments were used to assess phosphopeptide changes, and the data generated by the two methods was largely complementary (non-overlapping). Label-free quantitation of peptide peak abundances was used to accurately determine fold-changes between control and treated samples. Protein interaction network analysis allowed the data to be placed in a biologically relevant context, and follow-up validation of selected findings confirmed the accuracy of the proteomic data. Together, this study provides a framework for start-to-finish proteomic analysis of any experimental system under investigation to maximize the value of the proteomic study and yield the best chance for uncovering actionable target candidates.

16.
PLoS One ; 10(8): e0136247, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26302492

RESUMO

Skeletal muscle atrophy is a consequence of several physiological and pathophysiological conditions including muscle disuse, aging and diseases such as cancer and heart failure. In each of these conditions, the predominant mechanism contributing to the loss of skeletal muscle mass is increased protein turnover. Two important mechanisms which regulate protein stability and degradation are lysine acetylation and ubiquitination, respectively. However our understanding of the skeletal muscle proteins regulated through acetylation and ubiquitination during muscle atrophy is limited. Therefore, the purpose of the current study was to conduct an unbiased assessment of the acetylation and ubiquitin-modified proteome in skeletal muscle during a physiological condition of muscle atrophy. To induce progressive, physiologically relevant, muscle atrophy, rats were cast immobilized for 0, 2, 4 or 6 days and muscles harvested. Acetylated and ubiquitinated peptides were identified via a peptide IP proteomic approach using an anti-acetyl lysine antibody or a ubiquitin remnant motif antibody followed by mass spectrometry. In control skeletal muscle we identified and mapped the acetylation of 1,326 lysine residues to 425 different proteins and the ubiquitination of 4,948 lysine residues to 1,131 different proteins. Of these proteins 43, 47 and 50 proteins were differentially acetylated and 183, 227 and 172 were differentially ubiquitinated following 2, 4 and 6 days of disuse, respectively. Bioinformatics analysis identified contractile proteins as being enriched among proteins decreased in acetylation and increased in ubiquitination, whereas histone proteins were enriched among proteins increased in acetylation and decreased in ubiquitination. These findings provide the first proteome-wide identification of skeletal muscle proteins exhibiting changes in lysine acetylation and ubiquitination during any atrophy condition, and provide a basis for future mechanistic studies into how the acetylation and ubiquitination status of these identified proteins regulates the muscle atrophy phenotype.


Assuntos
Progressão da Doença , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Proteoma/genética , Acetilação , Sequência de Aminoácidos/genética , Animais , Expressão Gênica , Humanos , Músculo Esquelético/fisiopatologia , Processamento de Proteína Pós-Traducional/genética , Ratos , Transdução de Sinais , Ubiquitina/genética
17.
J Exp Med ; 211(9): 1715-22, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25092874

RESUMO

Ligation of erythropoietin (EPO) receptor (EPOR) JAK2 kinase complexes propagates signals within erythroid progenitor cells (EPCs) that are essential for red blood cell production. To reveal hypothesized novel EPOR/JAK2 targets, a phosphotyrosine (PY) phosphoproteomics approach was applied. Beyond known signal transduction factors, 32 new targets of EPO-modulated tyrosine phosphorylation were defined. Molecular adaptors comprised one major set including growth factor receptor-bound protein 2 (GRB2)-associated binding proteins 1-3 (GAB1-3), insulin receptor substrate 2 (IRS2), docking protein 1 (DOK1), Src homology 2 domain containing transforming protein 1 (SHC1), and sprouty homologue 1 (SPRY1) as validating targets, and SPRY2, SH2 domain containing 2A (SH2D2A), and signal transducing adaptor molecule 2 (STAM2) as novel candidate adaptors together with an ORF factor designated as regulator of human erythroid cell expansion (RHEX). RHEX is well conserved in Homo sapiens and primates but absent from mouse, rat, and lower vertebrate genomes. Among tissues and lineages, RHEX was elevated in EPCs, occurred as a plasma membrane protein, was rapidly PY-phosphorylated >20-fold upon EPO exposure, and coimmunoprecipitated with the EPOR. In UT7epo cells, knockdown of RHEX inhibited EPO-dependent growth. This was associated with extracellular signal-regulated kinase 1,2 (ERK1,2) modulation, and RHEX coupling to GRB2. In primary human EPCs, shRNA knockdown studies confirmed RHEX regulation of erythroid progenitor expansion and further revealed roles in promoting the formation of hemoglobinizing erythroblasts. RHEX therefore comprises a new EPO/EPOR target and regulator of human erythroid cell expansion that additionally acts to support late-stage erythroblast development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Eritroblastos/citologia , Eritroblastos/fisiologia , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/fisiologia , Eritropoetina/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Células Cultivadas , Eritropoese/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Janus Quinase 2/metabolismo , Dados de Sequência Molecular , Proteômica , Receptores da Eritropoetina/fisiologia , Transdução de Sinais
18.
Mol Cell Biol ; 34(15): 2874-89, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24865967

RESUMO

Noonan syndrome (NS) is an autosomal dominant disorder caused by activating mutations in the PTPN11 gene encoding Shp2, which manifests in congenital heart disease, short stature, and facial dysmorphia. The complexity of Shp2 signaling is exemplified by the observation that LEOPARD syndrome (LS) patients possess inactivating PTPN11 mutations yet exhibit similar symptoms to NS. Here, we identify "protein zero-related" (PZR), a transmembrane glycoprotein that interfaces with the extracellular matrix to promote cell migration, as a major hyper-tyrosyl-phosphorylated protein in mouse and zebrafish models of NS and LS. PZR hyper-tyrosyl phosphorylation is facilitated in a phosphatase-independent manner by enhanced Src recruitment to NS and LS Shp2. In zebrafish, PZR overexpression recapitulated NS and LS phenotypes. PZR was required for zebrafish gastrulation in a manner dependent upon PZR tyrosyl phosphorylation. Hence, we identify PZR as an NS and LS target. Enhanced PZR-mediated membrane recruitment of Shp2 serves as a common mechanism to direct overlapping pathophysiological characteristics of these PTPN11 mutations.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndrome LEOPARD/genética , Síndrome de Noonan/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Transdução de Sinais/genética , Peixe-Zebra/genética , Animais , Feminino , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Síndrome LEOPARD/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Células NIH 3T3 , Síndrome de Noonan/metabolismo , Fosforilação/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Peixe-Zebra/metabolismo
19.
Methods Mol Biol ; 1077: 81-104, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24014401

RESUMO

Improved sample preparation techniques and increasingly sensitive mass spectrometry (MS) analysis have revolutionized the study of protein post-translational modifications (PTMs) (Rush et al., Nat Biotechnol 23:94-101, 2005). Here, we describe a general approach for immunopurification and MS-based identification of acetylated proteins in biological samples. This approach is useful to characterize changes in the acetylome in response to biological interventions (Schwer et al., Aging Cell 8:604-606, 2009).


Assuntos
Cromatografia Líquida/métodos , Imunoprecipitação/métodos , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Espectrometria de Massas em Tandem/métodos , Acetilação , Humanos , Immunoblotting
20.
PLoS One ; 8(11): e80849, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278330

RESUMO

Reversible protein acetylation provides a central mechanism for controlling gene expression and cellular signaling events. It is governed by the antagonistic commitment of two enzymes families: the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). HDAC4, like its class IIa counterparts, is a potent transcriptional repressor through interactions with tissue specific transcription factors via its N-terminal domain. Whilst the lysine deacetylase activity of the class IIa HDACs is much less potent than that of the class I enzymes, HDAC4 has been reported to influence protein deacetylation through its interaction with HDAC3. To investigate the influence of HDAC4 on protein acetylation we employed the immunoaffinity-based AcetylScan proteomic method. We identified many proteins known to be modified by acetylation, but found that the absence of HDAC4 had no effect on the acetylation profile of the murine neonate brain. This is consistent with the biochemical data suggesting that HDAC4 may not function as a lysine deacetylase, but these in vivo data do not support the previous report showing that the enzymatic activity of HDAC3 might be modified by its interaction with HDAC4. To complement this work, we used Affymetrix arrays to investigate the effect of HDAC4 knock-out on the transcriptional profile of the postnatal murine brain. There was no effect on global transcription, consistent with the absence of a differential histone acetylation profile. Validation of the array data by Taq-man qPCR indicated that only protamine 1 and Igfbp6 mRNA levels were increased by more than one-fold and only Calml4 was decreased. The lack of a major effect on the transcriptional profile is consistent with the cytoplasmic location of HDAC4 in the P3 murine brain.


Assuntos
Encéfalo/enzimologia , Histona Desacetilases/metabolismo , Acetilação , Animais , Animais Recém-Nascidos , Citoplasma/enzimologia , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Transporte Proteico , Reprodutibilidade dos Testes , Transcrição Gênica , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa