Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J. venom. anim. toxins incl. trop. dis ; 30: e20230043, 2024. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1534803

RESUMO

Background: The bioactive peptides derived from snake venoms of the Viperidae family species have been promising as therapeutic candidates for neuroprotection due to their ability to prevent neuronal cell loss, injury, and death. Therefore, this study aimed to evaluate the cytoprotective effects of a synthetic proline-rich oligopeptide 7a (PRO-7a; <EDGPIPP) from Bothrops jararaca snake, on oxidative stress-induced toxicity in neuronal PC12 cells and astrocyte-like C6 cells. Methods: Both cells were pre-treated for four hours with different concentrations of PRO-7a, submitted to H2O2-induced damage for 20 h, and then the oxidative stress markers were analyzed. Also, two independent neuroprotective mechanisms were investigated: a) L-arginine metabolite generation via argininosuccinate synthetase (AsS) activity regulation to produce agmatine or polyamines with neuroprotective properties; b) M1 mAChR receptor subtype activation pathway to reduce oxidative stress and neuron injury. Results: PRO-7a was not cytoprotective in C6 cells, but potentiated the H2O2-induced damage to cell integrity at a concentration lower than 0.38 μM. However, PRO-7a at 1.56 µM, on the other hand, modified H2O2-induced toxicity in PC12 cells by restoring cell integrity, mitochondrial metabolism, ROS generation, and arginase indirect activity. The α-Methyl-DL-aspartic acid (MDLA) and L-NΩ-Nitroarginine methyl ester (L-Name), specific inhibitors of AsS and nitric oxide synthase (NOS), which catalyzes the synthesis of polyamines and NO from L-arginine, did not suppress PRO-7a-mediated cytoprotection against oxidative stress. It suggested that its mechanism is independent of the production of L-arginine metabolites with neuroprotective properties by increased AsS activity. On the other hand, the neuroprotective effect of PRO-7a was blocked in the presence of dicyclomine hydrochloride (DCH), an M1 mAChR antagonist. Conclusions: For the first time, this work provides evidence that PRO-7a-induced neuroprotection seems to be mediated through M1 mAChR activation in PC12 cells, which reduces oxidative stress independently of AsS activity and L-arginine bioavailability.(AU)


Assuntos
Oligopeptídeos/efeitos adversos , Receptores Muscarínicos/química , Venenos de Crotalídeos/síntese química , Prolina , Estresse Oxidativo
2.
Pharmaceuticals, v. 17, n. 7, 931, jul. 2024
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-5432

RESUMO

Introduction. The proline-rich decapeptide 10c (Bj-PRO-10c; ENWPHPQIPP) from the Bothrops jararaca snake modulates argininosuccinate synthetase (AsS) activity to stimulate L-arginine metabolite production and neuroprotection in the SH-SY5Y cell line. The relationships between structure, interactions with AsS, and neuroprotection are little known. We evaluated the neuroprotective effects of Bj-PRO-10c and three other PROs (Bn-PRO-10a, <ENWPRPKIPP; Bn-PRO-10aMK, <ENWPRPKIPPMK; and, Bn-PRO-10c, <ENWPRPKVPP) identified from Bitis nasicornis snake venom, with a high degree of similarity to Bj-PRO-10c, on oxidative stress-induced toxicity in neuronal PC12 cells and L-arginine metabolite generation via AsS activity regulation. Methods. Cell integrity, metabolic activity, reactive oxygen species (ROS) production, and arginase activity were examined after 4 h of PRO pre-treatment and 20 h of H2O2-induced damage. Results. Only Bn-PRO-10a-MK and Bn-PRO-10c restored cell integrity and arginase function under oxidative stress settings, but they did not reduce ROS or cell metabolism. The MK dipeptide in Bn-PRO-10aMK and valine (V8) in Bn-PRO-10c are important to these effects when compared to Bn-PRO-10a. Bj-PRO-10c is not neuroprotective in PC12 cells, perhaps because of their limited NMDA-type glutamate receptor activity. The PROs interaction analysis on AsS activation can be rated as follows: Bj-PRO-10c > Bn-PRO-10c > Bn-PRO-10a-MK > Bn-PRO-10a. The structure of PROs and their correlations with enzyme activity revealed that histidine (H5) and glutamine (Q7) in Bj-PRO-10c potentiated their affinity for AsS. Conclusions. Our investigation provides the first insights into the structure and molecular interactions of PROs with AsS, which could possibly further their neuropharmacological applications.

3.
São Paulo; 2018. 16 p. il.
Tese em Português | SES-SP, SES SP - Instituto Butantan, SES-SP, SES SP - Especializações, SES-SP | ID: but-ib17477

RESUMO

O presente trabalho de conlusão de programa - TCP traz a as etapas necessárias realizadas no Laboratório de Desenvolvimento de Processos do Instituto Butantan utilizando a bactéria Escherichia coli para o procedimento de extração de OMV, sendo o cultivo realizado em meio de cultura LB. Estas bactérias são bacilos Gram-negativos, pertencentes à família Enterobacteriaceae, capazes de crescer aeróbia e anaeróbicamente à 37°C. Estão normalmente presentes no intestino de humanos comensalmente, sendo que algumas cepas são patogênicas causando diversas doenças e infecções hospitalares. Estas bactérias Produzem vesículas de membranas externas (OMV), estruturas esféricas com diâmetro entre 20~200 nm e liberadas no meio de cultura durante seu cultivo em meio líquido. As OMVs são altamente imunogênicas e são antígenos vacinais promissores para o controle de infecções hospitalares. O Instituto Butantan tem interesse nessa linha de pesquisa pois é o principal produtor de imunobiológicos do Brasil, responsável por grande porcentagem da produção nacional de vacinas que são distribuídas para os diversos postos de saúde, sob a responsabilidade da Secretaria da Saúde.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa