Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Respir Res ; 19(1): 77, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712563

RESUMO

In the original publication [1] is an error in table 1. The correct version can be found in this Erratum.

2.
J Nanosci Nanotechnol ; 12(6): 4678-84, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22905516

RESUMO

Anisotropic rutile/anatase TiO2 nanoparticles (AB-TiO2) were synthesized by the Ti-peroxo complex method. Their photocatalytic activity in the degradation of Rhodamine B (RhB) was evaluated and compared to that of commercial TiO2 P25 and TiO2 obtained through the benzyl alcohol route (OB-TiO2). The samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR in DRIFT mode), Field-Emission Scanning Electronic Microscopy (FEG-SEM), N2 physisorption and UV-visible spectroscopy. Photodegradation of RhB was carried out under visible light and the results revealed a remarkable photocatalytic activity of the AB-TiO2 in terms of surface area. The excellent performance of the AB-TiO2 was explained in light of the synergistic effect of the coexistence of anatase/rutile phases, anisotropy and irreversible adsorption of organic species during sol-gel synthesis. UV-visible measurements also indicated that N-deethylation and photobleaching mechanisms occur to different extents, depending on the surface composition of the photocatalyst.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Titânio/química , Catálise , Luz , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Teste de Materiais , Conformação Molecular/efeitos da radiação , Nanoestruturas/efeitos da radiação , Tamanho da Partícula , Propriedades de Superfície/efeitos da radiação , Titânio/efeitos da radiação
3.
Rev Med Chil ; 140(7): 926-33, 2012 Jul.
Artigo em Espanhol | MEDLINE | ID: mdl-23282708

RESUMO

Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous disease, that is defined by the degree of obstruction rendered by the forced expiratory volume in the first second (FEVj). This is a good parameter to define the severity of the disease but does not account for its heterogeneity and does not provide a good comprehension of its different clinical behaviors and responses to treatment. Therefore, the classification of these patients in different clinical phenotypes has been attempted, trying to search for common clinical behaviors and responses to treatment. These phenoptypes must be validated in longitudinal studies. Some of the phenotypes detected are COPD with chronic respiratory failure and responsive to home oxygen therapy, COPD with upper lobe emphysema and responsive to volume reduction surgery, COPD with frequent exacerbation behavior, COPD resembling bronchitis and responsive to Roflumilast and possibly, COPD with systemic involvement. Historically, the phenotypes pink puffer, blue bloater, chronic bronchitis were defined. In the next years, we will know if the definitions of these phenotypes will aid in the management of patients with COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica/genética , Bronquite/genética , Enfisema/genética , Humanos , Fenótipo , Índice de Gravidade de Doença
4.
Chemistry ; 17(41): 11515-9, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21953929

RESUMO

The development of reliable nanostructured devices is intrinsically dependent on the description and manipulation of materials' properties at the atomic scale. Consequently, several technological advances are dependent on improvements in the characterization techniques and in the models used to describe the properties of nanosized materials as a function of the synthesis parameters. The evaluation of doping element distributions in nanocrystals is directly linked to fundamental aspects that define the properties of the material, such as surface-energy distribution, nanoparticle shape, and crystal growth mechanism. However, this is still one of the most challenging tasks in the characterization of materials because of the required spatial resolution and other various restrictions from quantitative characterization techniques, such as sample degradation and signal-to-noise ratio. This paper addresses the dopant segregation characterization for two antimony-doped tin oxide (Sb:SnO(2)) systems, with different Sb doping levels, by the combined use of experimental and simulated high-resolution transmission electron microscopy (HRTEM) images and surface-energy ab initio calculations. The applied methodology provided three-dimensional models with geometrical and compositional information that were demonstrated to be self-consistent and correspond to the systems' mean properties. The results evidence that the dopant distribution configuration is dependent on the system composition and that dopant atom redistribution may be an active mechanism for the overall surface-energy minimization.

5.
J Am Chem Soc ; 131(40): 14544-8, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19807192

RESUMO

Modeling of nanocrystals supported by advanced morphological and chemical characterization is a unique tool for the development of reliable nanostructured devices, which depends on the ability to synthesize and characterize materials on the atomic scale. Among the most significant challenges in nanostructural characterization is the evaluation of crystal growth mechanisms and their dependence on the shape of nanoparticles and the distribution of doping elements. This paper presents a new strategy to characterize nanocrystals, applied here to antimony-doped tin oxide (Sb-SnO(2)) (ATO) by the combined use of experimental and simulated high-resolution transmission electron microscopy (HRTEM) images and surface energy ab initio calculations. The results show that the Wulff construction can not only describe the shape of nanocrystals as a function of surface energy distribution but also retrieve quantitative information on dopant distribution by the dimensional analysis of nanoparticle shapes. In addition, a novel three-dimensional evaluation of an oriented attachment growth mechanism is provided in the proposed methodology. This procedure is a useful approach for faceted nanocrystal shape modeling and indirect quantitative evaluation of dopant spatial distribution, which are difficult to evaluate by other techniques.

6.
Chemphyschem ; 10(5): 841-6, 2009 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-19219870

RESUMO

This work focuses on the nonaqueous synthesis of antimony-doped tin oxide nanocrystals in the size range of 2-6 nm and the investigation of their solubility in organic solvents (CHCl(3) and THF) in the presence of amphiphilic molecules (oleic acid and oleylamine). To unravel the underlying processes, a set of molecular dynamics simulations is performed involving the compatibility of oleic acid and oleylamine in mixtures with both CHCl(3) and THF. The results show that the method is useful for obtaining the desired oxide, and that the interaction between amphiphilic molecules and solvents can be predicted by molecular dynamics simulations with very good qualitative agreement.

7.
Nanoscale ; 3(4): 1910-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21423940

RESUMO

In this work, we describe a kinetically controlled crystallization process assisted by an oriented attachment (OA) mechanism based on a nonaqueous sol-gel synthetic method (specifically, the reaction of titanium(IV) chloride (TiCl(4)) with n-octanol) to prepare re-crystallized anatase TiO(2) mesocrystals (single crystal). The kinetics study revealed a multi-step and hierarchical process controlled by OA, and a high resolution transmission electron microscopy (HRTEM) analysis clearly shows that the synthesized mesocrystal presents a truncated bipyramidal Wulff shape, indicating that its surface is dominated by {101} facets. This shape is developed during the recrystallization step. The material developed here displayed superior photocatalytic activity under visible light irradiation compared to TiO(2)-P25 as a benchmarking.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Titânio/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
8.
Chem Commun (Camb) ; 47(11): 3117-9, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21258701

RESUMO

This work reports a detailed characterization of an anomalous oriented attachment behaviour for SnO(2) nanocrystals. Our results evidenced an anisotropic growth for two identical <110> directions, which are equivalent according to the SnO(2) crystallographic structure symmetry. A hypothesis is proposed to describe this behaviour.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa