Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 24(6): e202200612, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36326485

RESUMO

The high toxicity of organophosphates, along with its wide use as agrochemicals and chemical warfare, urges efficient degradation methods. Alkaline hydrolysis stands out, which is strongly structure-dependent. The alkaline hydrolysis of various organophosphates is described using a bilinear variation of the Brønsted equation, which evaluates concomitantly the effect of the leaving and non-leaving groups. Over 50 reactions were successfully correlated linearly and the contribution of the usually underestimated non-leaving group seems to be as important as the leaving group. The hetero atom effect (P=O and P=S) seems to vary the contribution of these groups. This concise understanding of the structure-reactivity relationship allows to predict optimal neutralization processes and is key for chemical security, saving time, resources and avoiding unnecessary manipulation of toxic chemicals.

2.
Org Biomol Chem ; 20(38): 7604-7608, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36148796

RESUMO

The neutralisation of structurally varied chemical warfare agent simulants (blister and nerve agents) and pesticides (Paraoxon) with the assistance of high pressure is reported. Chloroethyl amines and sulfides (nitrogen and sulfur mustards), phosphonothioates (V-series nerve agents) and phosphates (pesticide) readily react with simple nucleophilic scavengers (alcohols, amines) at P > 14 000 bar.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Praguicidas , Álcoois , Aminas , Nitrogênio , Paraoxon , Fosfatos , Sulfetos , Enxofre
3.
Chem Rec ; 21(10): 2638-2665, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34117695

RESUMO

Neutralization of organophosphates is an issue of public health and safety, involving agrochemicals and chemical warfare. A promising approach is the nucleophilic neutralization, scope of this review, which focuses on the molecular nucleophiles: hydroxide, imidazole derivatives, alpha nucleophiles, amines and other nucleophiles. A reactivity mapping is given correlating the pathways and reaction efficiency with structural dependence of the nucleophile (basicity) and the organophosphate (electrophilic centers, P=O/P=S shift, leaving and non-leaving group). Reactions extremely unfavorable (>20 years) can be reduced to seconds with various nucleophiles, some which are catalytic. Although there is no universal nucleophile, a lack of selectivity in some cases accounts for plenty of versatility in other reactions. The ideal neutralization requires a solid mechanistic understanding, together with balancing factors such as milder conditions, fast process, selectivity and less toxic products.

4.
Chemistry ; 26(22): 5017-5026, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32027765

RESUMO

The harmful impact caused by pesticides on human health and the environment necessitates the development of efficient degradation processes and control of prohibited stocks of such substances. Organophosphates (OPs) are among the most used agrochemicals in the world and their degradation can proceed through several possible pathways. Investigating the reactivity of OPs with nucleophilic species allows one to propose new and efficient catalyst scaffolds for use in detoxification. In light of the remarkable catalytic activity of imidazole (IMZ) at promoting dephosphorylation processes of OPs, the reactivity of 4(5)-hydroxymethylimidazole (HMZ) with diethyl-2,4-dinitrophenylphosphate (DEDNPP) and Paraoxon are evaluated by combining experimental and theoretical approaches. It is observed that HMZ is an efficient and regiospecific catalyst with reactivity modulated by competing tautomers. To propose an optimal IMZ-based catalyst, quantum chemical calculations were performed for monosubstituted 4(5)IMZ derivatives that might cleave DEDNPP. Both inductive effects and hydrogen bonding by the substituents are shown to influence barriers and mechanisms.

5.
Chemistry ; 25(3): 817-822, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30357982

RESUMO

Organophosphates (OPs) constitute many toxic agrochemicals and warfare and can undergo a wide spectrum of mechanisms, some which are fairly unexplored. In this sense, concise mechanistic elucidation stands out as a strategic tool for achieving efficient detoxification and for monitoring processes. Particularly intriguing is the effect of substituting the oxygen atom of the phosphoryl moiety (P=O) in OPs with a sulfur atom to give the thio-derived OPs (i.e., OTPs, P=S). In general, imidazole (IMZ) reacts very efficiently with OPs by targeting the phosphorus atom, although herein we evidence a thio-driven shift with OTPs: IMZ undergoes unusual nucleophilic attack at the aliphatic carbon atom of methyl parathion. Alkylation of IMZ under mild conditions (aqueous weakly basic medium) is also novel and should be applicable to other novel IMZ-based architectures, and thereby, it can be a great ally for organic synthesis. Overall, a broader understanding of the mechanistic trend involved in such highly toxic agents is provided.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa