Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8016): 447-456, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839969

RESUMO

Increasing rates of autoimmune and inflammatory disease present a burgeoning threat to human health1. This is compounded by the limited efficacy of available treatments1 and high failure rates during drug development2, highlighting an urgent need to better understand disease mechanisms. Here we show how functional genomics could address this challenge. By investigating an intergenic haplotype on chr21q22-which has been independently linked to inflammatory bowel disease, ankylosing spondylitis, primary sclerosing cholangitis and Takayasu's arteritis3-6-we identify that the causal gene, ETS2, is a central regulator of human inflammatory macrophages and delineate the shared disease mechanism that amplifies ETS2 expression. Genes regulated by ETS2 were prominently expressed in diseased tissues and more enriched for inflammatory bowel disease GWAS hits than most previously described pathways. Overexpressing ETS2 in resting macrophages reproduced the inflammatory state observed in chr21q22-associated diseases, with upregulation of multiple drug targets, including TNF and IL-23. Using a database of cellular signatures7, we identified drugs that might modulate this pathway and validated the potent anti-inflammatory activity of one class of small molecules in vitro and ex vivo. Together, this illustrates the power of functional genomics, applied directly in primary human cells, to identify immune-mediated disease mechanisms and potential therapeutic opportunities.


Assuntos
Inflamação , Macrófagos , Proteína Proto-Oncogênica c-ets-2 , Feminino , Humanos , Masculino , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Cromossomos Humanos Par 21/genética , Bases de Dados Factuais , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genômica , Haplótipos/genética , Inflamação/genética , Doenças Inflamatórias Intestinais/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Proteína Proto-Oncogênica c-ets-2/genética , Proteína Proto-Oncogênica c-ets-2/metabolismo , Reprodutibilidade dos Testes , Fatores de Necrose Tumoral/metabolismo , Interleucina-23/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-18238648

RESUMO

For the past two years we have been implementing a program for the establishment of scientific time and frequency metrology in Brazil. The main objective of this program is to construct an atomic fountain and use it as a primary standard. As a first step toward this goal, we have constructed a (133)Cs beam optically pumped conventional clock. In this paper we describe the system and the results of its evaluation. The possible limitations of our short-term stability are discussed.

3.
Br J Pharmacol ; 171(8): 2230-42, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24684390

RESUMO

BACKGROUND AND PURPOSE: (R,S)-ketamine produces rapid and significant antidepressant effects in approximately 65% of patients suffering from treatment-resistant bipolar depression (BD). The genetic, pharmacological and biochemical differences between ketamine responders and non-responders have not been identified. The purpose of this study was to employ a metabolomics approach, a global, non-targeted determination of endogenous metabolic patterns, to identify potential markers of ketamine response and non-response. EXPERIMENTAL APPROACH: Plasma samples from 22 BD patients were analyzed to produce metabolomic patterns. The patients had received ketamine in a placebo-controlled crossover study and the samples were obtained 230 min post-administration at which time the patients were categorized as responders or non-responders. Matching plasma samples from the placebo arm of the study were also analysed. During the study, the patients were maintained on either lithium or valproate. KEY RESULTS: The metabolomic patterns were significantly different between the patients maintained on lithium and those maintained on valproate, irrespective of response to ketamine. In the patients maintained on lithium, 18 biomarkers were identified. In responders, lysophosphatidylethanolamines (4) and lysophosphatidylcholines (9) were increased relative to non-responders. CONCLUSIONS AND IMPLICATIONS: The results indicate that the differences between patients who respond to ketamine and those who do not are due to alterations in the mitochondrial ß-oxidation of fatty acids. These differences were not produced by ketamine administration. The data indicate that pretreatment metabolomics screening may be a guide to the prediction of response and a potential approach to the individualization of ketamine therapy.


Assuntos
Transtorno Bipolar/sangue , Transtorno Depressivo Resistente a Tratamento/sangue , Ketamina/uso terapêutico , Lisofosfatidilcolinas/sangue , Lisofosfolipídeos/sangue , Metaboloma/efeitos dos fármacos , Adulto , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Biomarcadores Farmacológicos/sangue , Estudos Cross-Over , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Quimioterapia Combinada , Feminino , Humanos , Ketamina/farmacologia , Lítio/uso terapêutico , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Ácido Valproico/uso terapêutico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa