RESUMO
The airflow restriction mask (ARM) is a practical and inexpensive device for respiratory muscle training. Wearing an ARM has recently been combined with high-intensity interval exercise (HIIE), but its effect on neuromuscular fatigue is unknown. The present study investigated the effects of ARM wearing on neuromuscular fatigue after an HIIE session. Fourteen healthy men performed two HIIE sessions (4 × 4 min at 90% HRmax , 3 min recovery at 70% HRmax ) with or without an ARM. Neuromuscular fatigue was quantified via pre- to post-HIIE changes in maximal voluntary contraction (MVC), voluntary activation (VA, central fatigue), and potentialized evoked twitch force at 100, 10, and 1 Hz (peripheral fatigue). Blood pH and lactate were measured before and after the HIIE session, while HR, SpO2 , dyspnea, physical sensation of effort (P-RPE), and Task Effort and Awareness (TEA) were recorded every bout. The exercise-induced decrease in MVC was higher (p < 0.05) in the ARM (-28 ± 12%) than in the Control condition (-20 ± 11%). The VA decreased (p < 0.05) in the ARM (-11 ± 11%) but not in the control condition (-4 ± 5%, p > 0.05). Pre- to post-HIIE declines in evoked twitch at 100, 10, and 1 Hz were similar (p > 0.05) between ARM and control conditions (ARM: -18 ± 10, -43 ± 11 and -38 ± 12%; Control: -18 ± 14, -43 ± 12 and -37 ± 17%). When compared with the control, the HIIE bout wearing ARM was marked by higher heart rate, plasma lactate concentration, dyspnea, P-RPE and TEA, as well as lower SpO2 and blood pH. In conclusion, ARM increases perceptual and physiological stress during a HIIE, which may lead to a greater post-exercise central fatigue.
Assuntos
Treinamento Intervalado de Alta Intensidade , Consumo de Oxigênio , Exercício Físico , Fadiga , Frequência Cardíaca , Humanos , Masculino , Fadiga Muscular , Fenômenos Fisiológicos RespiratóriosRESUMO
PURPOSE: Caffeine improves cycling time trial (TT) performance; however, it is unknown whether caffeine is ergogenic when competing against other riders. The aim of this study was to investigate whether caffeine improves performance during a 4-km cycling TT when riding against a virtual opponent, and whether it is associated with increased muscle activation and at the expense of greater end-exercise central and peripheral fatigue. METHODS: Using a randomized, crossover, and double-blind design, eleven well-trained cyclists completed a 4-km cycling TT alone without supplementation (CON), or against a virtual opponent after ingestion of placebo (OP-PLA) or caffeine (5 mg.kg-1, OP-CAF). Central and peripheral fatigue were quantified via the pre- to post-exercise decrease in voluntary activation and potentiated twitch force, respectively. Muscle activation was continually measured during the trial via electromyography activity. RESULTS: Compared to CON, OP-PLA improved 4-km cycling TT performance (P = 0.018), and OP-CAF further improved performance when compared to OP-PLA (P = 0.050). Muscle activation was higher in OP-PLA and OP-CAF than in CON throughout the trial (P = 0.003). The pre- to post-exercise reductions in voluntary activation and potentiated twitch force were, however, similar between experimental conditions (P > 0.05). Compared to CON, OP-PLA increased the rating of perceived exertion during the first 2 km, but caffeine blunted this increase with no difference between the OP-CAF and CON conditions. CONCLUSIONS: Caffeine is ergogenic when riding against a virtual opponent, but this is not due to greater muscle activation or at the expense of greater end-exercise central or peripheral fatigue.
Assuntos
Desempenho Atlético , Substâncias para Melhoria do Desempenho , Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Cafeína/farmacologia , Estudos Cross-Over , Método Duplo-Cego , Ingestão de Alimentos , Humanos , Masculino , Fadiga Muscular , Substâncias para Melhoria do Desempenho/farmacologia , PoliésteresRESUMO
OBJECTIVE: We investigated the effects of acute ingestion of Maytenus ilicifolia extract on metabolic and cardiopulmonary responses during a high-intensity interval exercise (HIIE), and its consequence on neuromuscular fatigue. METHODS: Ten healthy men underwent a HIIE (4 x 4 min, 3 min recovery) one hour after ingesting 400 mg of Maytenus ilicifolia extract (MIE) or placebo. Oxygen uptake (VÌO2), dioxide carbon production (VÌCO2), ventilation (VÌE) and heart rate (HR) were measured throughout the HIIE. Maximal voluntary contraction (MVC), voluntary activation (VA), and evoked 1, 10 and 100 Hz force twitch were measured before supplementation (baseline), and before (pre-HIIE) and after the HIIE (post-HIIE). RESULTS: The VÌO2, VÌE, VÌE/VÌO2 ratio and HR increased progressively throughout the HIIE under both conditions (p < 0.05). MIE increased HR, however, at bouts 1 and 2 and mean VÌO2 during HIIE. The mean respiratory exchange ratio during recovery was also reduced with MIE (p < 0.05). MVC and evoked force at 1, 10 and 100 Hz declined similarly after HIIE, regardless of the condition (MIE: -18 ± 17%, -50 ± 15%, -61 ± 13% and -34 ± 10% vs. placebo: -19 ± 15%, -48 ± 16%, -58 ± 12 and -29 ± 11%, respectively, p < 0.05). There was no effect of exercise or MIE on VA (p > 0.05). CONCLUSION: MIE increases heart rate in the first bouts and mean oxygen uptake during HIIE without changes in neuromuscular fatigue development.
Assuntos
Maytenus , Exercício Físico , Humanos , Fadiga Muscular , Oxigênio , Consumo de Oxigênio , Extratos VegetaisRESUMO
PURPOSE: To investigate the relationship between the recovery of neuromuscular fatigue and the recovery of amount of work done above critical power (W´). METHODS: Ten healthy men performed, on different days, constant work rate exercises until task failure to determine critical power (CP) and W´. In the three following visits, participants performed two exhausting constant work rate exercises estimated to induce task failure within 6 min (P61 and P62), interspaced by 3, 6 or 15 min of recovery. Neuromuscular function was assessed before and periodically after the P61 using percutaneous electrical femoral nerve stimulation. The W´ recovery was measured from the total work performed above CP during the P62. RESULTS: The P61 induced a full use of W´ and a reduction in maximal voluntary contraction (MVC, - 19 ± 4%), voluntary activation (VA, - 6 ± 2%) and twitch force stimulated at 1 Hz (- 37 ± 11%), 10 Hz (- 50 ± 16%) and 100 Hz (- 32 ± 11%), when compared to baseline (P < 0.05). The time constant of VA recovery was significantly faster than the time constant of W´ recovery (P < 0.05), but there was no significant difference between the time constant of W´ recovery and the time constant of recovery of MVC or twitch force stimulated at 1, 10 and 100 Hz (P > 0.05). However, the time constant of W´ recovery was only associated to the time constant of MVC recovery (r = 0.73, P < 0.05). CONCLUSION: The W´ recovery is not associated to the recovery of peripheral or central fatigue alone. Rather, W´ seems to be associated to the recovery of the overall capacity to generate force.
Assuntos
Tolerância ao Exercício/fisiologia , Exercício Físico/fisiologia , Fadiga Muscular/fisiologia , Recuperação de Função Fisiológica/fisiologia , Adulto , Estimulação Elétrica , Eletromiografia , Teste de Esforço , Nervo Femoral/fisiologia , Humanos , Masculino , Músculo Esquelético/fisiologia , Resistência Física/fisiologia , Adulto JovemRESUMO
PURPOSE: We tested the hypothesis that carbohydrate ingestion during exercise improves time trial (TT) performance and that this carbohydrate-induced improvement is greater when carbohydrates are ingested during exercise in a fasted rather than a fed state. METHODS: Nine males performed 105 minutes of constant-load exercise (50% of the difference between the first and second lactate thresholds), followed by a 10-km cycling TT. Exercise started at 9 am, 3 hours after either breakfast (FED, 824 kcal, 67% carbohydrate) or a 15-hour overnight fast (FAST). Before exercise, after every 15 minutes of exercise and at 5 km of the TT, participants ingested 2 mL kg-1 body mass of a non-caloric sweetened solution containing either carbohydrate (8% of maltodextrin, CHO) or placebo (0% carbohydrate, PLA). RESULTS: Irrespective of the fasting state, when carbohydrate was ingested during exercise, the rating of perceived exertion (RPE) was lower throughout the constant-load exercise, while the plasma glucose concentration and carbohydrate oxidation were higher during the last stages of the constant-load exercise (P < 0.05). Consequently, TT performance was faster when carbohydrate was ingested during exercise (18.5 ± 0.3 and 18.7 ± 0.4 minutes for the FEDCHO and FASTCHO conditions, respectively) than when the placebo was ingested during exercise (20.2 ± 0.8 and 21.7 ± 1.4 minutes for the FEDPLA and FASTPLA conditions, respectively), regardless of fasting. CONCLUSION: These findings indicate that even when breakfast is provided before exercise, carbohydrate ingestion during exercise is still beneficial for exercise performance. However, ingesting carbohydrate during exercise can overcome a lack of breakfast.
Assuntos
Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Carboidratos da Dieta/administração & dosagem , Jejum , Fenômenos Fisiológicos da Nutrição Esportiva , Adulto , Glicemia/análise , Metabolismo dos Carboidratos , Método Duplo-Cego , Humanos , Masculino , Esforço Físico , Adulto JovemRESUMO
OBJECTIVE: This study aimed to verify the acute and prolonged effects of stretch-shortening cycle exercise (SSC) on performance and neuromuscular function following a 4-km cycling time trial (4-km TT). METHODS: On separate days, individuals performed a 4-km TT without any previous exercise (CON), immediately (ACUTE) and 48 h after (PROL) SSC protocol (i.e., 100-drop jumps). Neuromuscular function was measured at baseline SSC (baseline), before (pre-TT) and after (post-TT) 4-km TT. Muscle soreness and inflammatory responses also were assessed. RESULTS: The endurance performance was impaired in both ACUTE (- 2.3 ± 1.8%) and PROL (- 1.8 ± 2.4%) compared with CON. The SSC protocol caused also an acute reduction in neuromuscular function, with a greater decrease in potentiated quadriceps twitch-force (Qtw.pot - 49 ± 16%) and voluntary activation (VA - 6.5 ± 7%) compared for CON and PROL at pre-TT. The neuromuscular function was fully recovered 48 h after SSC protocol. Muscle soreness and IL-10 were elevated only 48 h after SSC protocol. At post-TT, Qtw.pot remained lower in ACUTE (- 52 ± 14%) compared to CON (- 29 ± 7%) and PROL (- 31 ± 16%). CONCLUSION: These findings demonstrate that impairment in endurance performance induced by prior SSC protocol was mediated by two distinct mechanisms, where the acute impairment was related to an exacerbated degree of peripheral and central fatigue, and the prolonged impairment was due to elevated perceived muscle soreness.
Assuntos
Fadiga/etiologia , Contração Isométrica , Fadiga Muscular , Resistência Física , Exercício Pliométrico/métodos , Adulto , Fadiga/fisiopatologia , Humanos , Interleucinas/sangue , Ácido Láctico/sangue , Masculino , Exercício Pliométrico/efeitos adversosRESUMO
It has been assumed that exercise intensity variation throughout a cycling time trial (TT) occurs in alignment of various metabolic changes to prevent premature task failure. However, this assumption is based on target metabolite responses, which limits our understanding of the complex interconnection of metabolic responses during exercise. The current study characterized the metabolomic profile, an untargeted metabolic analysis, after specific phases of a cycling 4-km TT. Eleven male cyclists performed three separated TTs in a crossover counterbalanced design, which were interrupted at the end of the fast-start (FS, 600 ± 205 m), even-pace (EP, 3600 ± 190 m), or end-spurt (ES, 4000 m) phases. Blood samples were taken before any exercise and 5 min after exercise cessation, and the metabolomic profile characterization was performed using Nuclear Magnetic Resonance metabolomics. Power output (PO) was also continually recorded. There were higher PO values during the FS and ES compared to the EP (all p < 0.05), which were accompanied by distinct metabolomic profiles. FS showed high metabolite expression in TCA cycle and its related pathways (e.g., glutamate, citric acid, and valine metabolism); whereas, the EP elicited changes associated with antioxidant effects and oxygen delivery adjustment. Finally, ES was related to pathways involved in NAD turnover and serotonin metabolism. These findings suggest that the specific phases of a cycling TT are accompanied by distinct metabolomic profiles, providing novel insights regarding the relevance of specific metabolic pathways on the process of exercise intensity regulation.
Assuntos
Ciclismo , Estudos Cross-Over , Metaboloma , Humanos , Masculino , Metaboloma/fisiologia , Adulto , Ciclismo/fisiologia , Ciclo do Ácido Cítrico , Serotonina/sangue , NAD/sangue , NAD/metabolismo , Adulto Jovem , Ácido Glutâmico/sangue , Ácido Glutâmico/metabolismo , Metabolômica , Valina/sangue , Ácido Cítrico/sangueRESUMO
Caffeine is one of the most consumed ergogenic aids around the world. Many studies support the ergogenic effect of caffeine over a large spectrum of exercise types. While the stimulatory effect of caffeine on the central nervous system is the well-accepted mechanism explaining improvements in exercise performance during high-intensity whole-body exercise, in which other physiological systems such as pulmonary, cardiovascular, and muscular systems are maximally activated, a direct effect of caffeine on such systems cannot be ignored. A better understanding of the effects of caffeine on multiple physiological systems during high-intensity whole-body exercise might help to expand its use in different sporting contexts (e.g., competitions in different environments, such as altitude) or even assist the treatment of some diseases (e.g., chronic obstructive pulmonary disease). In the present narrative review, we explore the potential effects of caffeine on the pulmonary, cardiovascular, and muscular systems, and describe how such alterations may interact and thus contribute to the ergogenic effects of caffeine during high-intensity whole-body exercise. This integrative approach provides insights regarding how caffeine influences endurance performance and may drive further studies exploring its mechanisms of action in a broader perspective.
Assuntos
Cafeína/farmacologia , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Exercício Físico/fisiologia , Pulmão/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Substâncias para Melhoria do Desempenho/farmacologia , Resistência Física/efeitos dos fármacos , Animais , Sistema Nervoso Central/fisiologia , Humanos , Pulmão/fisiologia , Músculo Esquelético/fisiologiaRESUMO
Purpose: This study investigated the effects of previous exhaustive upper body exercise on performance and neuromuscular fatigue following a 4-km cycling time-trial (4-km TT). Methods: Eight recreational cyclists performed a 4-km TT with (ARMPRE) or without (CONTR) a previous arm-crank maximal incremental test. In each experimental session, neuromuscular fatigue was evaluated with a series of electrically evoked and maximal voluntary isometric contractions (MVC). Oxygen uptake ( V Ë O2), heart rate, electromyographic muscle activity (EMGRMS) and rating of perceived exertion (RPE) were also recorded throughout the 4-km TT. Results: The average power output during the 4-km TT was reduced (P = .027) for the ARMPRE (299 ± 59 W) group, compared with CONTR (310 ± 59 W) and overall performance in 4-km TT was impaired (P = .021) in ARMPRE (382 ± 28 s) compared with CONTR (376 ± 27 s). The decrease observed in MVC (P = .033) and potentiated peak twitch force (P = .004) at post-TT were similar between the ARMPRE and CONTR conditions (P = .739 and P = .493, respectively). There was no (P = .619) change in voluntary activation at post-TT between conditions. V Ë O2, EMGRMS and RPE measured throughout the 4-km TT were not significantly different between the conditions (P = .558, P = .558 and P = .940, respectively). The rate of RPE change relative to power output average and heart rate was higher (P = .030 and P = .013, respectively) in ARMPRE (0.031 ± 0.018 AU/W and 168 ± 8 bpm) than CONTR (0.022 ± 0.010 AU/W and 161 ± 7 bpm). Conclusion: These results suggest that impaired performance in ARMPRE was mostly due to pronounced perception of effort rather than neuromuscular fatigue.
Assuntos
Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Exercício Físico/fisiologia , Fadiga Muscular/fisiologia , Extremidade Superior/fisiologia , Estimulação Elétrica , Eletromiografia , Nervo Femoral/fisiologia , Frequência Cardíaca , Humanos , Contração Isométrica , Consumo de Oxigênio , Percepção/fisiologia , Esforço Físico/fisiologiaRESUMO
PURPOSE: We examined the effects of listening to music on time to exhaustion and psychophysiological responses during moderate-intensity exercise performed in fatigued and non-fatigued conditions. METHODS: Fourteen healthy men performed moderate-intensity exercise (60% Wmax) until exhaustion under four different conditions: with and without pre-fatigue (induced by 100 drop jumps) and listening and not listening to music. RESULTS: Time to exhaustion was lower in the fatigued than the non-fatigued condition regardless listening to music. Similarly, RPE was higher in the fatigued than the non-fatigued condition, but music had no effect. On the other hand, listening to music decreased the associative thoughts regardless of fatigue status. Heart rate was not influenced by any treatment. CONCLUSION: These results suggest that listening to music changes attentional focus but is not able to reverse fatigue-derived alteration of performance.
Assuntos
Exercício Físico/fisiologia , Exercício Físico/psicologia , Fadiga/fisiopatologia , Fadiga/psicologia , Música , Antropometria , Atenção , Percepção Auditiva , Teste de Esforço , Humanos , Masculino , Músculo Esquelético/fisiopatologia , Percepção , Pensamento , Fatores de Tempo , Adulto JovemRESUMO
The objective of this study was to analyze the influence of the presence and absence of competitors on pacing, overall running performance, and mood state during a self-paced 3-km run. Nine recreational runners participated in this study. They performed the following tests: a) an incremental test to exhaustion to measure the respiratory compensation point (RCP), maximal oxygen uptake, and peak treadmill speed; b) a submaximal speed constant test to measure running economy; and c) two 3-km running time trials performed collectively (COL, head-to-head competition) or individually (IND, performed alone) to establish pacing and running performance. The COL condition was formed of a group of four runners or five runners. Runners were grouped by matched performance times and to retain head-to-head characteristics.A mood state profile questionnaire was completed before and after the 3-km running time trial. The overall performance was better in the COL than in the IND (11.75 ± 0.05 min vs. 12.25 ± 0.06 min, respectively; p = 0.04). The running speeds during the first 500 m were significantly greater in COL (16.8 ± 2.16 km·h−1) than in IND (15.3 ± 2.45 km·h−1) (p = 0.03).The gain in running speed from IND to COL during the first 400 m (i.e. running speed in COL less running speed in IND) was significantly correlated with the RCP (r = 0.88; p = 0.05). The vigor score significantly decreased from pre- to post-running in COL (p=0.05), but not in IND (p=0.20). Additionally, the post running vigor was significantly higher in IND compared to COL (p = 0.03).These findings suggested that the presence of competitors induces a fast start, which results in an improved overall performance and reduced post-exercise vigor scores, compared to an individual run.
Assuntos
Afeto/fisiologia , Comportamento Competitivo/fisiologia , Corrida/fisiologia , Corrida/psicologia , Adulto , Teste de Esforço , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Esforço Físico/fisiologia , Estatísticas não Paramétricas , Inquéritos e Questionários , Fatores de Tempo , Interface Usuário-Computador , Adulto JovemRESUMO
The objective of this study was to examine the effect of caffeine on judo performance, perceived exertion, and plasma lactate response when ingested during recovery from a 5-day weight loss period. Six judokas performed two cycles of a 5-day rapid weight loss procedure to reduce their body weight by ~5%. After weigh-in, subjects re-fed and rehydrated over a 4-h recovery period. In the third hour of this "loading period", subjects ingested a capsule containing either caffeine (6 mg·kg-1) or placebo. One hour later, participants performed three bouts of a judo fitness test with 5-min recovery periods. Perceived exertion and plasma lactate were measured before and immediately after each test bout. Body weight was reduced in both caffeine and placebo conditions after the weight loss period (-3.9% ± 1.6% and -4.0% ± 2.3% from control, respectively, p < 0.05). At three hours after weigh-in, body weight had increased with both treatments but remained below the control (-3.0% ± 1.3% and -2.7% ± 2.2%). There were no significant differences in the number of throws between the control, caffeine or placebo groups. However, plasma lactate was systemically higher and perceived exertion lower in the subjects who ingested caffeine compared to either the control or placebo subjects (p < 0.05). In conclusion, caffeine did not improve performance during the judo fitness test after a 5-day weight loss period, but reduced perceived exertion and increased plasma lactate.
Assuntos
Atletas , Desempenho Atlético/fisiologia , Cafeína/administração & dosagem , Ácido Láctico/sangue , Artes Marciais , Redução de Peso , Tecido Adiposo , Adulto , Composição Corporal/efeitos dos fármacos , Peso Corporal , Cafeína/sangue , Estudos Cross-Over , Método Duplo-Cego , Frequência Cardíaca/efeitos dos fármacos , Humanos , Reprodutibilidade dos Testes , Adulto JovemRESUMO
The purpose of the present study was to examine the effects of a high- or low-carbohydrate (CHO) diet on performance, aerobic and anaerobic contribution, and metabolic responses during supramaximal exercise. Six physically-active men first performed a cycling exercise bout at 115% maximal oxygen uptake to exhaustion after following their normal diet for 48 h (â¼50% of CHO, control test). Seventy-two hours after, participants performed a muscle glycogen depletion exercise protocol, followed by either a high- or low-CHO diet (â¼70 and 25% of CHO, respectively) for 48 h, in a random, counterbalanced order. After the assigned diet period (48 h), the supramaximal cycling exercise bout (115% maximal oxygen consumption) to exhaustion was repeated. The low-CHO diet reduced time to exhaustion when compared with both the control and the high-CHO diet (-19 and -32%, respectively, p < 0.05). The reduced time to exhaustion following the low-CHO diet was accompanied by a lower total aerobic energy contribution (-39%) compared with the high-CHO diet (p < 0.05). However, the aerobic and anaerobic energy contribution at the shortest time to exhaustion (isotime) was similar among conditions (p > 0.05). The low-CHO diet was associated with a lower blood lactate concentration (p < 0.05), with no effect on the plasma concentration of insulin, glucose and K(+) (p > 0.05). In conclusion, a low-CHO diet reduces both performance and total aerobic energy provision during supramaximal exercise. As peak K(+) concentration was similar, but time to exhaustion shorter, the low-CHO diet was associated with an earlier attainment of peak plasma K(+) concentration.