Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Health Care Qual Assur ; 27(2): 111-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24745137

RESUMO

PURPOSE: Quantitative instruments to assess patient safety culture have been developed recently and a few review articles have been published. Measuring safety culture enables healthcare managers and staff to improve safety behaviours and outcomes for patients and staff. The study aims to determine the AHRQ Hospital Survey on Patient Safety Culture (HSPSC) Portuguese version's validity and reliability. DESIGN/METHODOLOGY/APPROACH: A missing-value analysis and item analysis was performed to identify problematic items. Reliability analysis, inter-item correlations and inter-scale correlations were done to check internal consistency, composite scores. Inter-correlations were examined to assess construct validity. A confirmatory factor analysis was performed to investigate the observed data's fit to the dimensional structure proposed in the AHRQ HSPSC Portuguese version. To analyse differences between hospitals concerning composites scores, an ANOVA analysis and multiple comparisons were done. FINDINGS: Eight of 12 dimensions had Cronbach's alphas higher than 0.7. The instrument as a whole achieved a high Cronbach's alpha (0.91). Inter-correlations showed that there is no dimension with redundant items, however dimension 10 increased its internal consistency when one item is removed. ORIGINALITY/VALUE: This study is the first to evaluate an American patient safety culture survey using Portuguese data. The survey has satisfactory reliability and construct validity.


Assuntos
Administração Hospitalar/métodos , Cultura Organizacional , Segurança do Paciente , Comunicação , Coleta de Dados , Humanos , Liderança , Recursos Humanos em Hospital , Portugal , Melhoria de Qualidade/organização & administração , Reprodutibilidade dos Testes
2.
BMC Bioinformatics ; 13: 147, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22734592

RESUMO

BACKGROUND: A common task in analyzing microarray data is to determine which genes are differentially expressed across two (or more) kind of tissue samples or samples submitted under experimental conditions. Several statistical methods have been proposed to accomplish this goal, generally based on measures of distance between classes. It is well known that biological samples are heterogeneous because of factors such as molecular subtypes or genetic background that are often unknown to the experimenter. For instance, in experiments which involve molecular classification of tumors it is important to identify significant subtypes of cancer. Bimodal or multimodal distributions often reflect the presence of subsamples mixtures. Consequently, there can be genes differentially expressed on sample subgroups which are missed if usual statistical approaches are used. In this paper we propose a new graphical tool which not only identifies genes with up and down regulations, but also genes with differential expression in different subclasses, that are usually missed if current statistical methods are used. This tool is based on two measures of distance between samples, namely the overlapping coefficient (OVL) between two densities and the area under the receiver operating characteristic (ROC) curve. The methodology proposed here was implemented in the open-source R software. RESULTS: This method was applied to a publicly available dataset, as well as to a simulated dataset. We compared our results with the ones obtained using some of the standard methods for detecting differentially expressed genes, namely Welch t-statistic, fold change (FC), rank products (RP), average difference (AD), weighted average difference (WAD), moderated t-statistic (modT), intensity-based moderated t-statistic (ibmT), significance analysis of microarrays (samT) and area under the ROC curve (AUC). On both datasets all differentially expressed genes with bimodal or multimodal distributions were not selected by all standard selection procedures. We also compared our results with (i) area between ROC curve and rising area (ABCR) and (ii) the test for not proper ROC curves (TNRC). We found our methodology more comprehensive, because it detects both bimodal and multimodal distributions and different variances can be considered on both samples. Another advantage of our method is that we can analyze graphically the behavior of different kinds of differentially expressed genes. CONCLUSION: Our results indicate that the arrow plot represents a new flexible and useful tool for the analysis of gene expression profiles from microarrays.


Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias/genética , Software , Regulação Neoplásica da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Curva ROC
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa