Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
4.
ESMO Open ; 7(1): 100350, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34942438

RESUMO

BACKGROUND: Preliminary analysis from the Vax-On study did not find a correlation between cancer treatment type and antibody response to COVID-19 vaccination. We carried out a secondary subgroup analysis to verify the effects of comprehensive cancer treatment classification on vaccine immunogenicity. METHODS: The Vax-On study prospectively enrolled patients who started a two-dose messenger RNA-BNT162b2 vaccine schedule from 9 March 2021 to 12 April 2021 (timepoint-1). Those on active treatment within the previous 28 days accounted for the exposed cases. Patients who had discontinued such treatment by at least 28 days or received intravesical therapy represented the control cases. Quantification of immunoglobulin G (IgG) antibodies against the receptor binding domain of the S1 subunit of the SARS-CoV-2 spike protein was carried out before the second dose (timepoint-2) and 8 weeks thereafter (timepoint-3). Seroconversion response was defined at ≥50 arbitrary units/ml IgG titer. Classification of antineoplastic agents was based on their pharmacodynamic properties. RESULTS: Three hundred and sixty-six patients were enrolled (86 and 260 as control and exposed cases, respectively). Univariate analysis revealed a significantly lower IgG titer after both doses of vaccine in subgroups treated with tyrosine kinase inhibitors (TKIs), multiple cytotoxic agents, alkylating agents, and topoisomerase inhibitors. At timepoint-3, seroconversion response was significantly impaired in the topoisomerase inhibitors and mechanistic target of rapamycin (mTOR) inhibitors subgroups. After multivariate testing, treatment with alkylating agents and TKIs was significantly associated with a reduced change in IgG titer at timepoint-2. Treatment with mTOR inhibitors resulted in a similar interaction at each timepoint. Cyclin-dependent kinase 4/6 inhibitor treatment was independently correlated with an incremental variation in IgG titer at timepoint-3. Specific subgroups (TKIs, antimetabolites, alkylating agents, and multiple-agent chemotherapy) predicted lack of seroconversion at timepoint-2, but their effect was not retained at timepoint-3. Eastern Cooperative Oncology Group performance status 2, immunosuppressive corticosteroid dosing, and granulocyte colony-stimulating factor use were independently linked to lower IgG titer after either dose of vaccine. CONCLUSIONS: Drugs interfering with DNA synthesis, multiple-agent cytotoxic chemotherapy, TKIs, mTOR and cyclin-dependent kinase 4/6 inhibitors differentially modulate humoral response to messenger RNA-BNT162b2 vaccine.


Assuntos
Antineoplásicos , Vacina BNT162 , COVID-19 , Imunidade Humoral , Imunogenicidade da Vacina , Neoplasias , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais/sangue , Antineoplásicos/farmacologia , Vacina BNT162/imunologia , COVID-19/prevenção & controle , Humanos , Imunidade Humoral/efeitos dos fármacos , Imunoglobulina G/sangue , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Estudos Prospectivos , RNA Mensageiro/genética , RNA Mensageiro/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia
5.
J Med Chem ; 44(24): 4092-113, 2001 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-11708913

RESUMO

In an effort to elucidate a set of structure-activity relationships in the alkenyldiarylmethane (ADAM) series of non-nucleoside reverse transcriptase inhibitors, a number of modifications were made at two locations: (1) the meta positions of the two aromatic rings and (2) the end of the alkenyl chain. Forty-two new ADAMs were synthesized and evaluated for inhibition of the cytopathic effect of HIV-1(RF) in CEM-SS cell culture and for inhibition of HIV-1 reverse transcriptase. The size of the aromatic substituents was found to affect anti-HIV activity, with optimal activity appearing with Cl, CH(3), and Br substituents and with diminished activity occurring with smaller (H and F) or larger (I and CF(3)) substituents. The substituents at the end of the alkenyl chain were also found to influence the antiviral activity, with maximal activity associated with methyl or ethyl ester groups and with diminished activity resulting from substitution with higher esters, amides, sulfides, sulfoxides, sulfones, thioesters, acetals, ketones, carbamates, ureas, and thioureas. Twelve of the new ADAMs displayed submicromolar EC(50) values for inhibition of the cytopathic effect of HIV-1(RF) in CEM-SS cells. Selected ADAMs, 19 and 21, were compared to previously published ADAMs 15 and 17 for antiviral efficacy and activity against the HIV-1 reverse transcriptase enzyme. All four ADAMs were found to inhibit HIV-1 reverse transcriptase enzyme activity, to inhibit the replication of a variety of HIV-1 clinical isolates representing syncytium-inducing, nonsyncytium-inducing, and subtype representative isolates, and to inhibit HIV-1 replication in monocytes. Subsequent assessment against a panel of site-directed reverse transcriptase mutants in NL4-3 demonstrated no effect of the K103N mutation on antiviral efficacy and a slight enhancement (6- to 11-fold) in sensitivity to AZT-resistant viruses. Additionally, ADAMs 19 (44-fold) and 21 (29-fold) were more effective against the A98G mutation (found in association with nevirapine resistance in vitro), and ADAM 21 was 5-fold and 2-fold more potent against the Y181C inactivation mutation than the previously reported ADAMs 15 and 17, respectively. All four ADAMs were tested for efficacy against a multidrug-resistant virus derived from a highly experienced patient expressing resistance to the reverse transcriptase enzyme inhibitors AZT, ddI, 3TC, d4T, foscarnet, and nevirapine, as well as the protease inhibitors indinavir, saquinavir, and nelfinavir. ADAM 21 was 2-fold more potent than ADAM 15 and 6-fold more potent than ADAMs 17 and 19 at preventing virus replication. Thus, we have identified a novel series of reverse transcriptase inhibitors with a favorable profile of antiviral activity against the primary mutation involved in clinical failure of non-nucleoside reverse transcriptase inhibitors, K103N, and that retain activity against a multidrug-resistant virus.


Assuntos
Alcenos/síntese química , Derivados de Benzeno/síntese química , Transcriptase Reversa do HIV/antagonistas & inibidores , Inibidores da Transcriptase Reversa/síntese química , Alcenos/química , Alcenos/farmacologia , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Linhagem Celular , Efeito Citopatogênico Viral , Resistência a Múltiplos Medicamentos , Farmacorresistência Viral , Transcriptase Reversa do HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/isolamento & purificação , Humanos , Técnicas In Vitro , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/enzimologia , Leucócitos Mononucleares/virologia , Modelos Moleculares , Monócitos/efeitos dos fármacos , Monócitos/enzimologia , Monócitos/virologia , Mutagênese Sítio-Dirigida , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Relação Estrutura-Atividade , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa