Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nano Lett ; 23(17): 7927-7933, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37647420

RESUMO

Transition metal dichalcogenides (TMDs) benefit electrical devices with spin-orbit coupling and valley- and topology-related properties. However, TMD-based devices suffer from traps arising from defect sites inside the channel and the gate oxide interface. Deactivating them requires independent treatments, because the origins are dissimilar. This study introduces a single treatment to passivate defects in a multilayer MoS2 FET. By applying back-gate bias, protons from an H-TFSI droplet are injected into the MoS2, penetrating deeply enough to reach the SiO2 gate oxide. The characterizations employing low-temperature transport and deep-level transient spectroscopy (DLTS) studies reveal that the trap density of S vacancies in MoS2 drops to the lowest detection level. The temperature-dependent mobility plot on the SiO2 substrate resembles that of the h-BN substrate, implying that dangling bonds in SiO2 are passivated. The carrier mobility on the SiO2 substrate is enhanced by approximately 2200% after the injection.

2.
Nano Lett ; 22(13): 5207-5213, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35729739

RESUMO

The two different light-matter interactions between visible and infrared light are not switchable because control mechanisms have not been elucidated so far, which restricts the effective spectral range in light-sensing devices. In this study, modulation of the effective spectral range is demonstrated using the metal-insulator transition of MoS2. Nondegenerate MoS2 exhibits a photoconductive effect in detecting visible light. In contrast, degenerate MoS2 responds only to mid-infrared (not visible) light by displaying a photoinduced heating effect via free carrier absorption. Depending on the doping level, the optical behavior of MoS2 simulates the photoconductivity of either the semiconductor or the metal, further indicating that the optical metal-insulator transition is coherent with its electrical counterpart. The electrical switchability of MoS2 enables the development of an unprecedented and novel design optical sensor that can detect both visible and mid-IR (wavelength of 9.6 µm) ranges with a singular optoelectronic device.

3.
Angew Chem Int Ed Engl ; 62(33): e202302591, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37117156

RESUMO

We report a new strategy in which a thiolate-protected Ag25 nanocluster can be doped with open d-shell group 8 (Ru, Os) and 9 (Ir) metals by forming metal hydride (RuH2 , OsH2 , IrH) superatoms with a closed d-shell. Structural analyses using various experimental and theoretical methods revealed that the Ag25 nanoclusters were co-doped with the open d-shell metal and hydride species to produce superatom-in-superatom nanoclusters, establishing a novel superatom doping phenomenon for open d-shell metals. The synthesized superatom-in-superatom nanoclusters exhibited dopant-dependent photoluminescence (PL) properties. Comparative PL lifetime studies of the Ag25 nanoclusters doped with 8-10 group metals revealed that both radiative and nonradiative processes were significantly dependent on the dopant. The former is strongly correlated with the electron affinity of the metal dopant, whereas the latter is governed predominantly by the kernel structure changed upon the doping of the metal hydride(s).

4.
J Am Chem Soc ; 144(15): 6625-6639, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35380807

RESUMO

Density functional theory (DFT) calculations have become widespread in both chemistry and materials, because they usually provide useful accuracy at much lower computational cost than wavefunction-based methods. All practical DFT calculations require an approximation to the unknown exchange-correlation energy, which is then used self-consistently in the Kohn-Sham scheme to produce an approximate energy from an approximate density. Density-corrected DFT is simply the study of the relative contributions to the total energy error. In the vast majority of DFT calculations, the error due to the approximate density is negligible. But with certain classes of functionals applied to certain classes of problems, the density error is sufficiently large as to contribute to the energy noticeably, and its removal leads to much better results. These problems include reaction barriers, torsional barriers involving π-conjugation, halogen bonds, radicals and anions, most stretched bonds, etc. In all such cases, use of a more accurate density significantly improves performance, and often the simple expedient of using the Hartree-Fock density is enough. This Perspective explains what DC-DFT is, where it is likely to improve results, and how DC-DFT can produce more accurate functionals. We also outline challenges and prospects for the field.


Assuntos
Teoria da Densidade Funcional , Ânions
5.
Nano Lett ; 21(20): 8554-8562, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34623164

RESUMO

As a 3D topological insulator, bismuth selenide (Bi2Se3) has potential applications for electrically and optically controllable magnetic and optoelectronic devices. Understanding the coupling with its topological phase requires studying the interactions of carriers with the lattice on time scales down to the subpicosecond regime. Here, we investigate the ultrafast carrier-induced lattice contractions and interlayer modulations in Bi2Se3 thin films by time-resolved diffraction using an X-ray free-electron laser. The lattice contraction depends on the carrier concentration and is followed by an interlayer expansion accompanied by oscillations. Using density functional theory and the Lifshitz model, the initial contraction can be explained by van der Waals force modulation of the confined free carrier layers. Our theoretical calculations suggest that the band inversion, related to a topological phase transition, is modulated by the expansion of the interlayer distance. These results provide insights into the topological phase control by light-induced structural change on ultrafast time scales.

6.
J Chem Phys ; 154(12): 124122, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810668

RESUMO

A Kohn-Sham (KS) inversion determines a KS potential and orbitals corresponding to a given electron density, a procedure that has applications in developing and evaluating functionals used in density functional theory. Despite the utility of KS inversions, application of these methods among the research community is disproportionately small. We implement the KS inversion methods of Zhao-Morrison-Parr and Wu-Yang in a framework that simplifies analysis and conversion of the resulting potential in real-space. Fully documented Python scripts integrate with PySCF, a popular electronic structure prediction software, and Fortran alternatives are provided for computational hot spots.

7.
Angew Chem Int Ed Engl ; 60(41): 22293-22300, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34224193

RESUMO

Heterometal doping is a powerful method for tuning the physicochemical properties of metal nanoclusters. While the heterometals doped into such nanoclusters predominantly include transition metals with closed d-shells, the doping of open d-shell metals remains largely unexplored. Herein, we report the first synthesis of a [RhHAg24 (SPhMe2 )18 ]2- nanocluster, in which a Rh atom with open d-shells ([Kr]4d8 5s1 ) is incorporated into the Ag24 framework by forming a RhH superatom with closed d-shells ([Kr]4d10 ). Combined experimental and theoretical investigations showed that the Ag24 framework was co-doped with Rh and hydride and that the RhH dopant was a superatomic construct of a Pd atom. Additional studies demonstrated that the [RhHAg24 (SPhMe2 )18 ]2- nanocluster was isoelectronic to the [PdAg24 (SPhMe2 )18 ]2- nanocluster with the superatomic 8-electron configuration (1S2 1P6 ). This study demonstrated for the first time that a superatom could be incorporated into a cluster superatom to generate a stable superatom-in-superatom nanocluster.

8.
Annu Rev Phys Chem ; 68: 555-581, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28463652

RESUMO

We review the role of self-consistency in density functional theory (DFT). We apply a recent analysis to both Kohn-Sham and orbital-free DFT, as well as to partition DFT, which generalizes all aspects of standard DFT. In each case, the analysis distinguishes between errors in approximate functionals versus errors in the self-consistent density. This yields insights into the origins of many errors in DFT calculations, especially those often attributed to self-interaction or delocalization error. In many classes of problems, errors can be substantially reduced by using better densities. We review the history of these approaches, discuss many of their applications, and give simple pedagogical examples.

9.
Angew Chem Int Ed Engl ; 57(8): 2091-2095, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29277950

RESUMO

The development of energy-conversion devices using water movement has actively progressed. Ionovoltaic devices, which are driven by ion dynamics, show ion specificity by which different ions with identical charges show different output performance. However, the ion specificity remains poorly understood because the influence of the ion species on generated electric signals is not elucidated. The ion specificity in electric signals induced by flowing water droplet was investigated in terms of its relationship with the potential profile across the solid-liquid interface.

10.
J Am Chem Soc ; 139(32): 10968-10971, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28753025

RESUMO

Recently, various energy transducers driven by the relative motion of solids and liquids have been demonstrated. However, in relation to the energy transducer, a proper understanding of the dynamic behavior of ions remains unclear. Moreover, the energy density is low for practical usage mainly due to structural limitations, a lack of material development stemming from the currently poor understanding of the mechanisms, and the intermittently generated electricity given the characteristics of the water motion (pulsed signals). Here, we verify a hypothesis pertaining to the ion dynamics which govern the operation mechanism of the transducer. In addition, we demonstrate enhanced energy transducer to convert the mechanical energy of flowing water droplets into continuous electrical energy using an electrolyte-insulator-semiconductor structure as a device structure. The output power per droplet mass and the ratio of generated electric energy to the kinetic energy of water drops are 0.149v2 mW·g-1·m-2·s2 and 29.8%, respectively, where v is the speed of the water droplet.

11.
Opt Express ; 25(7): 8098-8107, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28380917

RESUMO

We explore plasmon-enhanced wire-gird polarizers (WGPs) to achieve improved polarimetric performance with more relaxed fabrication parameters compared to conventional WGP. A WGP designed with a blazed wire-grid profile was considered for plasmonic enhancement. The results show that a blazed WGP can achieve extremely high polarimetric extinction at a longer wire-grid period (Λ) compared to conventional WGP structure. Under the optimum geometrical parameters, a blazed WGP may attain an extinction ratio of over 40 dB at Λ = 800 nm, which may allow photolithography for fabrication. In contrast, conventional WGPs obtained comparable performance at Λ = 200 nm, requiring more difficult lithographic techniques. The study can therefore be of significant importance for WGPs to be more widely available for diverse applications.

12.
Phys Chem Chem Phys ; 19(16): 10274-10281, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28379263

RESUMO

Bolaamphiphilic molecules with tyrosyl end groups formed interior-filled spherical self-assemblies, which are distinct from the vesicular or tubular structures of other similar peptidic bolaamphiphile assemblies reported in the literature. In this study, the self-assembly mechanism of these tyrosyl bolaamphiphiles was investigated taking into consideration the solvent effects on the molecular interaction forces using molecular modeling. The dissipative particle dynamics simulation of an aqueous tyrosyl bolaamphiphile solution suggested that the interior-filled assemblies were produced by a solvent-regulated assembly of small aggregates of bolaamphiphiles. These small aggregates were generated by hydrophobic interactions at an early stage, and then further assembled to form large spherical assemblies through intermolecular forces, including hydrogen bonds between the intermediate aggregates. Additional experiments and density functional theory calculations based on solvent variations proved that smaller assembled structures could be obtained by disrupting the hydrogen bonds between the intermediates. The assembly mechanism of these peptidic bolaamphiphiles afforded a facile way to create condensed supramolecular structures with controlled sizes.

13.
Angew Chem Int Ed Engl ; 56(15): 4160-4164, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28319340

RESUMO

Cesium-based perovskite nanocrystals (NCs) have outstanding photophysical properties improving the performances of lighting devices. Fundamental studies on excitonic properties and hot-carrier dynamics in perovskite NCs further suggest that these materials show higher efficiencies compared to the bulk form of perovskites. However, the relaxation rates and pathways of hot-carriers are still being elucidated. By using ultrafast transient spectroscopy and calculating electronic band structures, we investigated the dependence of halide in Cs-based perovskite (CsPbX3 with X=Br, I, or their mixtures) NCs on the hot-carrier relaxation processes. All samples exhibit ultrafast (<0.6 ps) hot-carrier relaxation dynamics with following order: CsPbBr3 (310 fs)>CsPbBr1.5 I1.5 (380 fs)>CsPbI3 NC (580 fs). These result accounts for a reduced light emission efficiency of CsPbI3 NC compared to CsPbBr3 NC.

14.
J Physiol ; 594(11): 2929-55, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26663196

RESUMO

KEY POINTS: Cellular stimuli can modulate the ion selectivity of some anion channels, such as CFTR, ANO1 and the glycine receptor (GlyR), by changing pore size. Ion selectivity of CFTR, ANO1 and GlyR is critically affected by the electric permittivity and diameter of the channel pore. Pore size change affects the energy barriers of ion dehydration as well as that of size-exclusion of anion permeation. Pore dilatation increases the bicarbonate permeability (P HC O3/ Cl ) of CFTR, ANO1 and GlyR. Dynamic change in P HC O3/ Cl may mediate many physiological and pathological processes. ABSTRACT: Chloride (Cl(-) ) and bicarbonate (HCO3 (-) ) are two major anions and their permeation through anion channels plays essential roles in our body. However, the mechanism of ion selection by the anion channels is largely unknown. Here, we provide evidence that pore dilatation increases the bicarbonate permeability (P HC O3/ Cl ) of anion channels by reducing energy barriers of size-exclusion and ion dehydration of HCO3 (-) permeation. Molecular, physiological and computational analyses of major anion channels, such as cystic fibrosis transmembrane conductance regulator (CFTR), anoctamin-1(ANO1/TMEM16A) and the glycine receptor (GlyR), revealed that the ion selectivity of anion channels is basically determined by the electric permittivity and diameter of the pore. Importantly, cellular stimuli dynamically modulate the anion selectivity of CFTR and ANO1 by changing the pore size. In addition, pore dilatation by a mutation in the pore-lining region alters the anion selectivity of GlyR. Changes in pore size affected not only the energy barriers of size exclusion but that of ion dehydration by altering the electric permittivity of water-filled cavity in the pore. The dynamic increase in P HC O3/ Cl by pore dilatation may have many physiological and pathophysiological implications ranging from epithelial HCO3 (-) secretion to neuronal excitation.


Assuntos
Bicarbonatos/metabolismo , Canais de Cloreto/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas de Neoplasias/metabolismo , Poro Nuclear/metabolismo , Receptores de Glicina/metabolismo , Anoctamina-1 , Canais de Cloreto/química , Regulador de Condutância Transmembrana em Fibrose Cística/química , Células HEK293 , Humanos , Proteínas de Neoplasias/química , Permeabilidade , Estrutura Terciária de Proteína , Receptores de Glicina/química
15.
Phys Chem Chem Phys ; 18(5): 3871-7, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26765482

RESUMO

By utilizing single-molecule defocused wide-field fluorescence microscopy, we have investigated the molecular structural properties such as transition dipole moment orientations and the angular relationship among chromophores, as well as structural distortions and flexibilities depending on the ring size, in a series of cyclic porphyrin arrays bearing close likeness in overall architectures to the LH2 complexes in purple bacterial photosynthetic systems. Furthermore, comparing the experimental results with molecular dynamics simulations, we ascertained site selection for fluorescent trapping sites. Collectively, these experimental and computational results provide the basis for structure-property relationships and energy hopping/emitting processes in an important class of artificial light-harvesting molecular systems widely used in molecular electronics technology.

16.
Soft Matter ; 11(18): 3714-23, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25833200

RESUMO

By patterning surface grafts, we propose a simple and systematic method to form tubular structures for which two-dimensional grafted sheets are programmed to self-roll into hollow tubes with a desired size of the internal cavity. The repeating pattern of grafts utilizing defect sites causes anisotropy in the surface-grafted nanosheet, which spontaneously transforms into a curved secondary architecture and, thus, becomes a potential tool with which to form and control the curvature of nanotubes. In fact, the degree and the type of graft defect allow control of the internal cavity size and shape of the resulting nanotubes. By performing dissipative particle dynamics simulations on coarse-grained sheets, we found that the inner cavity size is inversely proportional to the graft-defect density, the difference in the graft densities between the two surface sides of the layer, regardless of whether the defects are patterned or random. While a random distribution of defects gives rise to a non-uniform local curvature and often leads to twisted tubes, regular patterns of graft defects ensure uniform local curvature throughout the sheet, which is important to generate monodisperse nanotubes. At a low graft-defect density, the sheet-to-tube transformation is governed by the layer anisotropy, which induces spontaneous scrolling along the long edge of the sheet, resulting in short tubes. Thus, the curve formation rate and the cavity diameter are independent of the pattern of the graft defects. At a high graft-defect density, however, the scroll direction owing to the graft pattern may conflict with that due to the layer anisotropy. To produce monodisperse nanotubes, two factors are important: (1) a graft-defect pattern parallel to the short edge of the layer, and (2) a graft-defect area wider than half of the graft coil length.


Assuntos
Modelos Moleculares , Nanotubos/química , Cinética , Polímeros/química
17.
Analyst ; 140(15): 5354-60, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26086591

RESUMO

Quenching of a fluorophore is significantly influenced by the molecular structure of the quencher. In this study, photoluminescence quenching by nitroaromatic compounds was evaluated to assess the molecular interaction between nitroaromatic molecules and the photoluminescent tyrosyl bolaamphiphile self-assembly, a nanoscale optical photoluminescent probe. Both the aromatic structure and hydrophilic functional groups of the nitroaromatic quencher molecules significantly enhanced the binding of quencher molecules to the photoluminescent probe. UV-vis spectroscopy supported the non-covalent molecular association of aromatic stacking, which significantly increased the quenching efficiency compared to an aliphatic compound. The hydrophilic groups of the nitroaromatic compounds also enhanced the photoluminescence quenching, because of the hydrophilic nature of the phenol moiety. Energy levels of the photoluminescent probe and quencher molecules, along with molecular interactions, were investigated to explain the quenching mechanism. Density functional theory (DFT) calculation was performed to provide the energy levels and charge density of the nitroaromatic compounds. The information presented in this study regarding the structural effect of a quencher molecule on the photoluminescence quenching of the photoluminescent probe will be useful in designing binding motifs of future photoluminescent probes.

18.
Angew Chem Int Ed Engl ; 54(43): 12711-5, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26331380

RESUMO

Excited-state dynamic planarization processes play a crucial role in determining exciton size in cyclic systems, as reported for π-conjugated linear oligomers. Herein, we report time-resolved fluorescence spectra and molecular dynamics simulations of π-conjugated cyclic oligothiophenes in which the number of subunits was chosen to show the size-dependent dynamic planarization in the vicinity of a ring-to-linear behavioral turning point. Analyses on the evolution of the total fluorescence intensity and the ratio between 0-1 to 0-0 vibronic bands suggest that excitons formed in a cyclic oligothiophene composed of six subunits fully delocalize over the cyclic carbon backbone, whereas those formed in larger systems fail to achieve complete delocalization. With the aid of molecular dynamics simulations, it is shown that distorted structures unfavorable for efficient exciton delocalization are more easily populated as the size of the cyclic system increases.

19.
J Chem Phys ; 140(18): 18A528, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24832336

RESUMO

Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential energy surfaces of HO·Cl(-) and HO·H2O complexes using various common approximate functionals, with and without this density correction. Commonly used approximations yield wrongly shaped surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical shapes and minima when density corrected. This improvement is retained even in the presence of implicit solvent.


Assuntos
Algoritmos , Artefatos , Hidróxidos/química , Modelos Químicos , Modelos Moleculares , Água/química , Simulação por Computador
20.
Nanoscale ; 16(9): 4851-4857, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38314888

RESUMO

Doping atomically precise metal nanoclusters (NCs) with heterometals is a powerful method for tuning the physicochemical properties of the original NCs at the atomic level. While the heterometals incorporated into metal NCs are limited to group 10-12 metals with closed d-shells, the doping of open d-shell metals remains largely unexplored. Herein, we report the synthesis of Rh-doped Au-Ag alloy NCs by a metal-exchange reaction of [RhHAg24(SPhMe2)18]2- NCs with an Au-thiolate complex. Combined experimental and theoretical structural studies revealed that the synthesized product is a dianionic [RhHAuxAg24-x(SPhMe2)18]2- NC (x = 8-12), consisting of RhH dopant, Au-rich kernel, and Ag-thiolate staple motifs, with the superatomic 8-electron configuration (1S21P6). Under aerobic conditions, the synthesized NCs underwent kernel evolution to generate a 6-electron [RhAuxAg24-x(SPhMe2)18]1- NC (1S21P4), which was initiated by the desorption of hydride from the kernel. Structural analysis of the [RhHAuxAg24-x(SPhMe2)18]2- NC suggests that the kernel evolution is induced by the change in chemical bonds surrounding the hydride in the Au-rich kernel.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa