Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Audiol Neurootol ; 26(4): 287-294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33647905

RESUMO

INTRODUCTION: The Vibrant Soundbridge (MED-EL Medical Electronics, Austria) is an active middle ear implant with a floating mass transducer (FMT) for patients with conductive, sensorineural, or mixed hearing loss. While the FMT is vertically aligned above the stapes head (SH) with the current Vibroplasty Clip coupler (MED-EL Medical Electronics), the new SH coupler was developed to mount the FMT on the inferior side of the stapes and to fit in the reduced middle ear space after canal-wall-down mastoidectomy. METHODS: Using 11 human cadaveric temporal bones (TBs), placements of the new SH couplers on the stapes were examined, and effective stimuli to the cochlea were evaluated by measuring piston-like motion of the stapes footplate with a current of 1 mA on the FMT. The results were assessed in comparison with the Vibroplasty Clip coupler. RESULTS: The new SH coupler showed perfect coupling on the stapes in 9 out of 11 TBs. A small gap between the SH and the plate of the connection link part was unavoidable in 2 TBs but had negligible effect on vibrational motion of the stapes. Vibrational motion of the stapes with the new SH coupler was reduced at frequencies above 3 kHz compared to the corresponding motion with the current Vibroplasty Clip coupler, but the relative attenuation over all 11 cadaveric temporal bones was <10 dB. CONCLUSIONS: The new SH coupler provides an alternative with more stable fixation when placement of the current Vibroplasty Clip coupler is limited due to insufficient space after canal-wall-down mastoidectomy, while still delivering effective stimuli to the cochlea.


Assuntos
Perda Auditiva Condutiva-Neurossensorial Mista , Prótese Ossicular , Orelha Média , Humanos , Bigorna/cirurgia , Estribo
2.
Artigo em Inglês | MEDLINE | ID: mdl-32564138

RESUMO

The sheep middle ear has been used in training to prepare physicians to perform surgeries and to test new ways of surgical access. This study aimed to (1) collect anatomical data and inertial properties of the sheep middle-ear ossicles and (2) explore effects of these features on sound transmission, in comparison to those of the human. Characteristic dimensions and inertial properties of the middle-ear ossicles of White-Alpine sheep (n = 11) were measured from high-resolution micro-CT data, and were assessed in comparison with the corresponding values of the human middle ear. The sheep middle-ear ossicles differed from those of human in several ways: anteroinferior orientation of the malleus handle, relatively small size of the incus with a relatively short distance to the lenticular process, a large area of the articular surfaces at the incudostapedial joint, and a relatively small moment of inertia along the anterior-posterior axis. Analysis in this study suggests that structure and orientation of the middle-ear ossicles in the sheep are conducive to an increase in the hinge-like ossicular-lever-action around the anterior-posterior axis. Considering the substantial anatomical differences, outcomes of middle-ear surgeries would presumably be difficult to assess from experiments using the sheep middle ear.


Assuntos
Ossículos da Orelha/anatomia & histologia , Ossículos da Orelha/fisiologia , Orelha Média/anatomia & histologia , Orelha Média/fisiologia , Ovinos/anatomia & histologia , Animais , Audição/fisiologia , Humanos , Bigorna/anatomia & histologia , Bigorna/fisiologia , Martelo/anatomia & histologia , Martelo/fisiologia , Ovinos/fisiologia
3.
J Acoust Soc Am ; 147(3): 1985, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32237811

RESUMO

In order to better understand bone conduction sound propagation across the skull, three-dimensional (3D) wave propagation on the skull surface was studied, along with its dependence on stimulation direction and location of a bone conduction hearing aid (BCHA) actuator. Experiments were conducted on five Thiel embalmed whole head cadaver specimens. Stimulation, in the 0.1-10 kHz range, was sequentially applied at the forehead and mastoid via electromagnetic actuators from commercial BCHAs, supported by a 5-N steel band. The head response was quantified by sequentially measuring the 3D motion of ∼200 points (∼15-20 mm pitch) across the ipsilateral, top, and contralateral skull surface via a 3D laser Doppler vibrometer (LDV) system, guided by a robotic positioner. Low-frequency stimulation (<1 kHz) resulted in a spatially complex rigid-body-like motion of the skull that depended on both the stimulation condition and head support. The predominant motion direction was only 5-10 dB higher than other components below 1 kHz, with no predominance at higher frequencies. Sound propagation direction across the parietal plates did not coincide with stimulation location, potentially due to the head base and forehead remaining rigid-like at higher frequencies and acting as a large source for the deformation patterns across the parietal sections.


Assuntos
Condução Óssea , Vibração , Estimulação Acústica , Crânio/diagnóstico por imagem , Som
4.
Sensors (Basel) ; 18(10)2018 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30347862

RESUMO

(1) Background: The measurement of intracochlear sound pressure (ICSP) is relevant to obtain better understanding of the biomechanics of hearing. The goal of this work was a proof of concept of a partially implantable intracochlear acoustic receiver (ICAR) fulfilling all requirements for acute ICSP measurements in a large animal. The ICAR was designed not only to be used in chronic animal experiments but also as a microphone for totally implantable cochlear implants (TICI). (2) Methods: The ICAR concept was based on a commercial MEMS condenser microphone customized with a protective diaphragm that provided a seal and optimized geometry for accessing the cochlea. The ICAR was validated under laboratory conditions and using in-vivo experiments in sheep. (3) Results: For the first time acute ICSP measurements were successfully performed in a live specimen that is representative of the anatomy and physiology of the human. Data obtained are in agreement with published data from cadavers. The surgeons reported high levels of ease of use and satisfaction with the system design. (4) Conclusions: Our results confirm that the developed ICAR can be used to measure ICSP in acute experiments. The next generation of the ICAR will be used in chronic sheep experiments and in TICI.


Assuntos
Estimulação Acústica/instrumentação , Acústica/instrumentação , Implante Coclear/instrumentação , Implante Coclear/métodos , Estimulação Acústica/métodos , Experimentação Animal , Animais , Implantes Cocleares , Desenho de Equipamento/métodos , Humanos , Pressão , Desenho de Prótese/métodos , Ovinos , Som , Transdutores
5.
Int J Audiol ; 55(8): 439-46, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27139310

RESUMO

OBJECTIVE: This study explores the influence of stimulation position on bone conduction (BC) hearing sensitivity with a BC transducer attached using a headband. DESIGN: (1) The cochlear promontory motion was measured in cadaver heads using laser Doppler vibrometry while seven different positions around the pinna were stimulated using a bone anchored hearing aid transducer attached using a headband. (2) The BC hearing thresholds were measured in human subjects, with the bone vibrator Radioear B71 attached to the same seven stimulation positions. STUDY SAMPLE: Three cadaver heads and twenty participants. RESULTS: Stimulation on a position superior-anterior to the pinna generated the largest promontory motion and the lowest BC thresholds. Stimulations on the positions superior to the pinna, the mastoid, and posterior-inferior to the pinna showed similar magnitudes of promontory motion and similar levels of BC thresholds. CONCLUSION: Stimulations on the regions superior to the pinna, the mastoid, and posterior-inferior to the pinna provide stable BC transmission, and are insensitive to small changes of the stimulation position. Therefore it is reliable to use the mastoid to determine BC thresholds in clinical audiometry. However, stimulation on a position superior-anterior to the pinna provides more efficient BC transmission than stimulation on the mastoid.


Assuntos
Estimulação Acústica/métodos , Condução Óssea/fisiologia , Auxiliares de Audição , Adulto , Audiometria , Limiar Auditivo/fisiologia , Cadáver , Cóclea/diagnóstico por imagem , Cóclea/fisiologia , Pavilhão Auricular/diagnóstico por imagem , Pavilhão Auricular/fisiologia , Técnicas de Imagem por Elasticidade , Feminino , Humanos , Masculino , Processo Mastoide/diagnóstico por imagem , Processo Mastoide/fisiologia , Adulto Jovem
6.
Audiol Neurootol ; 20(5): 339-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26340649

RESUMO

OBJECTIVE: To monitor cochlear function by extra- and intra-cochlear electrocochleography (ECoG) during and after cochlear implantation and thereby to enhance the understanding of changes in cochlear function following cochlear implantation surgery. METHODS: ECoG responses to acoustic stimuli of 250, 500 and 1,000 Hz were recorded in 9 cochlear implant recipients with presurgical residual hearing. During surgery extracochlear ECoG recordings were performed before and after insertion of the cochlear implant electrode array. After insertion of the electrode array, intracochlear ECoG recordings were conducted using intracochlear electrode contacts as recording electrodes. Intracochlear ECoG recordings were performed up to 6 months after implantation.ECoG findings were correlated with findings from audiometric tests. RESULTS: Extra- and intracochlear ECoG responses could be recorded in all subjects. Extracochlear ECoG recordings during surgery showed moderate changes.Loss or reduction of the ECoG signal at all three frequencies did not occur during cochlear implantation. During the first week following surgery, conductive hearing loss, due to middle ear effusion, led to a decrease in intracochlear ECoG signal amplitudes. This was not attributable to changes of cochlear function. All persistent reductions in ECoG response magnitude after normalization of the tympanogram occurred during the first week following implantation. Thresholds of ECoG signals were at or below hearing thresholds in all cases. CONCLUSION: Gross intracochlear trauma during surgery appears to be rare. In the early postoperative phase the ability to assess cochlear status by ECoG recordings was limited due to the regular occurrence of middle ear effusion.Still, intracochlear ECoG along with tympanogram recordings suggests that any changes of low-frequency cochlear function occur mainly during the first week after cochlear implantation. ECoG seems to be a promising tool to objectively assess changes in cochlear function in cochlear implant recipients and may allow further insight into the mechanisms underlying the loss of residual hearing.


Assuntos
Audiometria de Resposta Evocada/métodos , Implante Coclear , Implantes Cocleares , Perda Auditiva/fisiopatologia , Estimulação Acústica , Adulto , Idoso , Perda Auditiva/cirurgia , Humanos , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
7.
J Acoust Soc Am ; 134(5): 3749-58, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24180785

RESUMO

The basilar membrane (BM) and perilymph motion in the cochlea due to rocking stapes motion (RSM) and piston-like stapes motion (PSM) is modeled by numerical simulations. The full Navier-Stokes equations are solved in a two-dimensional box geometry. The BM motion is modeled by independent oscillators using an immersed boundary technique. The traveling waves generated by both stimulation modes are studied. A comparison of the peak amplitudes of the BM motion is presented and their dependence on the frequency and on the model geometry (stapes position and cochlear channel height) is investigated. It is found that the peak amplitudes for the RSM are lower and decrease as frequency decreases whereas those for the PSM increase as frequency decreases. This scaling behavior can be explained by the different mechanisms that excite the membrane oscillation. Stimulation with both modes at the same time leads to either a slight increase or a slight decrease of the peak amplitudes compared to the pure PSM, depending on the phase shift between the two modes. While the BM motion is dominated by the PSM mode under normal conditions, the RSM may lead to hearing if no PSM is present or possible, e.g., due to round window atresia.


Assuntos
Membrana Basilar/fisiologia , Cóclea/fisiologia , Mecanotransdução Celular , Modelos Biológicos , Movimento , Perilinfa/fisiologia , Estribo/fisiologia , Simulação por Computador , Humanos , Análise Numérica Assistida por Computador , Oscilometria , Pressão , Som , Fatores de Tempo
8.
Hear Res ; 430: 108709, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804054

RESUMO

INTRODUCTION: Surgical outcomes in ossiculoplasty with partial ossicular replacement prostheses (PORPs) are greatly influenced by the amount of preload imposed on the PORP. In this study, the attenuation of the middle-ear transfer function (METF) was experimentally investigated for prosthesis-related preloads in different directions, with and without concurrent application of stapedial muscle tension. Different PORP designs were assessed to determine functional benefits of specific design features under preload conditions. METHODS: The experiments were performed on fresh-frozen human cadaveric temporal bones. The effect of preloads along different directions were experimentally assessed by simulating anatomical variance and postoperative position changes in a controlled setup. The assessments were performed for three different PORP designs featuring either a fixed shaft or ball joint and a Bell-type or Clip-interface. Further, the combined effect of the preloads towards the medial direction with tensional forces of the stapedial muscle was assessed. The METF was obtained via laser-Doppler vibrometry for each measurement condition. RESULTS: The preloads as well as the stapedial muscle tension primarily attenuated the METF between 0.5 and 4 kHz. The largest attenuations resulted from the preload towards the medial direction. The attenuation of the METF with stapedial muscle tension was reduced with concurrent PORP preloads. PORPs with a ball joint resulted in reduced attenuation only for preloads along the long axis of the stapes footplate. In contrast to the clip interface, the Bell-type interface was prone to lose coupling with the stapes head for preloads in the medial direction. CONCLUSIONS: The experimental study of the preload effects indicates a direction-dependent attenuation of the METF, with the most pronounced effects resulting from preloads towards the medial direction. Based on the obtained results, the ball joint offers tolerance for angular positioning while the clip interface prevents PORP dislocations for preloads in lateral direction. At high preloads, the attenuation of the METF with stapedial muscle tension is reduced, which should be considered for the interpretation of postoperative acoustic reflex tests.


Assuntos
Prótese Ossicular , Substituição Ossicular , Humanos , Reflexo Acústico , Implantação de Prótese , Estribo/fisiologia , Timpanoplastia , Substituição Ossicular/métodos
9.
Hear Res ; 427: 108651, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462376

RESUMO

The time delay and/or malfunctioning of the Eustachian tube may cause pressure differences across the tympanic membrane, resulting in quasi-static movements of the middle-ear ossicles. While quasi-static displacements of the human middle-ear ossicles have been measured one- or two-dimensionally in previous studies, this study presents an approach to trace three-dimensional movements of the human middle-ear ossicles under static pressure loads in the ear canal (EC). The three-dimensional quasi-static movements of the middle-ear ossicles were measured using a custom-made stereo camera system. Two cameras were assembled with a relative angle of 7° and then mounted onto a robot arm. Red fluorescent beads of a 106-125 µm diameter were placed on the middle-ear ossicles, and quasi-static position changes of the fluorescent beads under static pressure loads were traced by the stereo camera system. All the position changes of the ossicles were registered to the anatomical intrinsic frame based on the stapes footplate, which was obtained from µ-CT imaging. Under negative ear-canal pressures, a rotational movement around the anterior-posterior axis was dominant for the malleus-incus complex, with small relative movements between the two ossicles. The stapes showed translation toward the lateral direction and rotation around the long axis of the stapes footplate. Under positive EC pressures, relative motion between the malleus and the incus at the IMJ became larger, reducing movements of the incus and stapes considerably and thus performing a protection function for the inner-ear structures. Three-dimensional tracing of the middle-ear ossicular chain provides a better understanding of the protection function of the human middle ear under static pressured loads as immediate responses without time delay.


Assuntos
Ossículos da Orelha , Orelha Média , Humanos , Orelha Média/fisiologia , Ossículos da Orelha/fisiologia , Bigorna/fisiologia , Estribo/fisiologia , Rotação
10.
Audiol Neurootol ; 17(5): 299-308, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22739432

RESUMO

This study aimed to assess the functional results of a new, active, acoustic-mechanical hearing implant, the Direct Acoustic Cochlear Stimulation Partial Implant (DACS PI), in a preclinical study. The DACS PI is an electromagnetic device fixed to the mastoid by screws and coupled to a standard stapes prosthesis by an artificial incus (AI). The function of the DACS PI-aided reconstruction was assessed by determining: (1) the maximum equivalent sound pressure level (SPL) of the implant, which was obtained from measurements of the volume displacement at the round window in normal and implanted ears, and (2) the quality at the coupling interface between the AI of the DACS and the stapes prosthesis, which was quantified from measurements of relative motions between the AI and the prosthesis. Both measurements were performed with fresh temporal bones using a scanning laser Doppler interferometry system. The expected maximum equivalent SPL with a typical driving voltage of 0.3 V was about 115-125 dB SPL up to 1.5 kHz in reconstruction with the DACS PI, and decreased with a roll-off slope of about 65 dB/decade, reaching 90 dB SPL at 8 kHz. The large roll-off relative to a normal ear was presumed to be a relatively high inductive impedance of the coil of the DACS PI actuator at higher frequencies. Good coupling quality between the AI and the prosthesis was achieved below the resonance (∼1.5 kHz) of the DACS PI for all tested stapes prostheses. Above the resonance, the SMart Piston, which is composed of a shape-memory alloy, had the best coupling quality.


Assuntos
Implante Coclear/instrumentação , Modelos Biológicos , Prótese Ossicular , Otosclerose/cirurgia , Desenho de Prótese , Cirurgia do Estribo/instrumentação , Estimulação Acústica/instrumentação , Estimulação Acústica/métodos , Implante Coclear/métodos , Humanos , Bigorna/fisiologia , Bigorna/cirurgia , Interferometria , Otosclerose/fisiopatologia , Janela da Cóclea/fisiologia , Janela da Cóclea/cirurgia , Estribo/fisiologia , Cirurgia do Estribo/métodos , Bancos de Tecidos
11.
Ear Hear ; 33(5): e24-31, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22699658

RESUMO

OBJECTIVES: As prostheses and techniques related to stapes surgery develop and improve, there is a need to assess the functional outcomes of the surgery objectively. This study provides a bench test method to assess the functional results of stapes surgery by measuring volume displacement at the round window (RW), which is closely related to pressure propagation of the travelling wave inside the cochlea and thus to hearing. DESIGN: Motion of the RW membrane in fresh temporal bones was measured using a scanning laser Doppler interferometry system for normal and reconstructed conditions, and the performance of the reconstruction with stapes surgery was quantitatively assessed by comparison of the volume displacements at the RW between the two conditions. To obtain optimal measurements, reflectivity of the laser beam of the scanning laser Doppler interferometry system was improved by retroreflective beads coated onto the surface of the RW, and orientation of the RW membrane relative to the laser beam was obtained using micro-computed tomography imaging. RESULTS: From measurements in 12 temporal bones, difference in the RW volume displacement between normal ears and ears reconstructed with stapes surgery was approximately 15 dB below 2 kHz and approximately 10 dB above 4 kHz, which was comparable with air-bone gaps in patients after stapes surgery. Two different sizes of the stapes prostheses were also tested (n = 3), and a tendency toward a better outcome with a larger diameter was found. CONCLUSION: The method developed in this study can be used to assess various prostheses and surgical conditions objectively in controlled laboratory environments. It may also have potential for providing ways to assess other middle- and inner-ear surgeries, and to study other aspects of hearing science.


Assuntos
Interferometria/métodos , Prótese Ossicular , Janela do Vestíbulo/fisiologia , Janela da Cóclea/fisiologia , Cirurgia do Estribo/métodos , Osso Temporal/fisiologia , Estudos de Casos e Controles , Feminino , Audição/fisiologia , Testes Auditivos , Humanos , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Janela do Vestíbulo/fisiopatologia , Janela da Cóclea/fisiopatologia , Som , Osso Temporal/fisiopatologia
12.
Hear Res ; 406: 108272, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34038827

RESUMO

The incudo-malleal joint (IMJ) in the human middle ear is a true diarthrodial joint and it has been known that the flexibility of this joint does not contribute to better middle-ear sound transmission. Previous studies have proposed that a gliding motion between the malleus and the incus at this joint prevents the transmission of large displacements of the malleus to the incus and stapes and thus contributes to the protection of the inner ear as an immediate response against large static pressure changes. However, dynamic behavior of this joint under static pressure changes has not been fully revealed. In this study, effects of the flexibility of the IMJ on middle-ear sound transmission under static pressure difference between the middle-ear cavity and the environment were investigated. Experiments were performed in human cadaveric temporal bones with static pressures in the range of +/- 2 kPa being applied to the ear canal (relative to middle-ear cavity). Vibrational motions of the umbo and the stapes footplate center in response to acoustic stimulation (0.2-8 kHz) were measured using a 3D-Laser Doppler vibrometer for (1) the natural IMJ and (2) the IMJ with experimentally-reduced flexibility. With the natural condition of the IMJ, vibrations of the umbo and the stapes footplate center under static pressure loads were attenuated at low frequencies below the middle-ear resonance frequency as observed in previous studies. After the flexibility of the IMJ was reduced, additional attenuations of vibrational motion were observed for the umbo under positive static pressures in the ear canal (EC) and the stapes footplate center under both positive and negative static EC pressures. The additional attenuation of vibration reached 4~7 dB for the umbo under positive static EC pressures and the stapes footplate center under negative EC pressures, and 7~11 dB for the stapes footplate center under positive EC pressures. The results of this study indicate an adaptive mechanism of the flexible IMJ in the human middle ear to changes of static EC pressure by reducing the attenuation of the middle-ear sound transmission. Such results are expected to be used for diagnosis of the IMJ stiffening and to be applied to design of middle-ear prostheses.


Assuntos
Orelha Média , Martelo , Humanos , Bigorna , Pressão , Som , Estribo , Osso Temporal , Vibração
13.
J Phys Condens Matter ; 32(24): 245501, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32079011

RESUMO

A new first-principles computation scheme to calculate 'branching ratio' has been applied to various 5d, 4d, and 3d transition metal elements and compounds. This recently suggested method is based on a theory which assumes the atomic core hole interacts barely with valence electrons. While it provides an efficient way to calculate the experimentally measurable quantity without generating spectrum itself, its reliability and applicability should be carefully examined especially for the light transition metal systems. Here we select 36 different materials and compare the calculation results with experimental data. It is found that our scheme well describes 5d and 4d transition metal systems whereas, for 3d materials, the difference between the calculation and experiment is quite significant. It is attributed to the neglect of core-valence interaction whose energy scale is comparable with the spin-orbit coupling of core p orbitals.

14.
IEEE Sens J ; 9(12): 1924-1932, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-20234800

RESUMO

The inability to identify 3-D force and moment components for actuators and sensors is a major limiting factor in the study of 3-D force interactions with small-scale biological structures. While recent advances have been made in the measurement of stimulating forces using load cells and atomic-force microscopy in experimental preparations of biological structures such as mammalian temporal bones, these techniques have mostly been limited to one or two dimensions. In this paper, a method is described for stimulating biological structures using a small magnet (2 mg Sm(2)Co(17)) and a nearby current-conducting coil (46 gauge, 50 turns), that allows the 3-D Lorentz forces and moments acting on the magnet to be calculated. To make these calculations possible, the dimensions and placements of the magnet and coil are accurately determined (within 10 µm for in vitro preparations) using high-resolution micro-CT imaging. This noncontact force motor method has been used to study the mechanics of the malleus-incus complex in the mammalian middle ear in addition to basilar membrane mechanics and fluid flow inside the cochlea, and it can also be applied to the study of other biomechanical structures.

15.
Hear Res ; 378: 108-125, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30885510

RESUMO

OBJECTIVES: Investigation of bone conduction sound propagation by osseous and non-osseous pathways and their interactions based upon the stimulation site and coupling method of the actuator from a bone conduction hearing aid (BCHA). METHODS: Experiments were conducted on five Thiel embalmed whole head cadaver specimens. The electromagnetic actuator from a commercial bone conduction hearing aid (BCHA) (Baha® Cordelle II) was used to provide a stepped sine stimulus in the range of 0.1-10 kHz. Osseous pathways (direct bone stimulation or transcutaneous stimulation) were sequentially activated by stimulation at the mastoid or the BAHA side using several methods including a percutaneously implanted screw, Baha® Attract transcutaneous magnet and a 5-N (5-N) steel headband. Non-osseous pathways (only soft tissue or intra-cranial contents) were activated by actuator stimulation on the eye or neck via attachment to a 5-N steel headband, and were compared with stimulation via equivalent attachment on the mastoid and forehead. The response of the skull was measured as motions of the ipsi- and contralateral promontory and intracranial pressure (ICP) in the central, anterior, posterior, ipsilateral and contralateral temporal regions of the cranial space. Promontory motion was monitored using a 3-dimensional Laser Doppler vibrometer (3D LDV) system. RESULTS: The promontory undergoes spatially complex motion with similar contributions from all motion components, regardless of stimulation mode. Combined 3D promontory motion provided lower inter-sample variability than did any individual component. Transcranial transmission showed gain for the low frequencies and attenuation above 1 kHz, independent of stimulation mode This effect was not only for the magnitude but also its spatial composition such that contralateral promontory motion did not follow the direction of ipsilateral stimulation above 0.5 kHz. Non-osseous stimulation on the neck and eye induced comparable ICP relative to percutaneous (via screw) mastoid stimulation. Corresponding phase data indicated lower phase delays for ICP when stimulation was via non-osseous means (i.e., to the eye) versus osseous means (i.e., to the mastoid or forehead). Sound propagation due to skull stimulation passes through the thicker bony sections first before activating the CSF. CONCLUSION: Utilization of 3D promontory motion measurements provides more precise (lower inter-sample variability) information about bone vibrations than does any individual component. It also provides a more detailed description of transcranial attenuation. A comprehensive combination of motion and pressures measurements across the head, combined with a variation of the stimulation condition, could reveal details about sound transmission within the skull.


Assuntos
Condução Óssea , Pressão Intracraniana , Osso Temporal/fisiologia , Idoso , Idoso de 80 Anos ou mais , Cadáver , Embalsamamento , Auxiliares de Audição , Humanos , Fluxometria por Laser-Doppler , Pessoa de Meia-Idade , Movimento (Física) , Pressão , Som , Fatores de Tempo , Vibração
16.
Hear Res ; 378: 63-74, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30598255

RESUMO

BACKGROUND: The annular ligament of the human stapes constitutes a compliant connection between the stapes footplate and the peripheral cochlear wall at the oval window. The cross section of the human annular ligament is characterized by a three-layered structure, which resembles a sandwich-shaped composite structure. As accurate and precise descriptions of the middle-ear behavior are constrained by lack of information on the complex geometry of the annular ligament, this study aims to obtain comprehensive geometrical data of the annular ligament via multiphoton imaging. METHODS: The region of interest containing the stapes and annular ligament was harvested from a fresh-frozen human temporal bone of a 46-years old female. Multiphoton imaging of the unstained sample was performed by detecting the second-harmonic generation of collagen and the autofluorescence of elastin, which are constituents of the annular ligament. The multiphoton scans were conducted on the middle-ear side and cochlear side of the annular ligament to obtain accurate images of the face layers on both sides. The face layers of the annular ligament were manually segmented on both multiphoton scans, and then registered to high-resolution µCT images. RESULTS: Multiphoton scans of the annular ligament revealed 1) relatively large thickness of the core layer compared to the face layers, 2) asymmetric geometry of the face layers between the middle-ear side and cochlear side, and variation of their thickness and width along the footplate boundary, 3) divergent relative alignment of the two face layers, and 4) different fiber composition of the face layers along the boundary with a collagen-reinforcement near the anterior pole on the middle-ear side. CONCLUSION AND OUTLOOK: Multiphoton microscopy is a feasible approach to obtain the detailed three-dimensional features of the human stapedial annular ligament along its full boundary. The detailed description of the sandwich-shaped structures of the annular ligament is expected to contribute to modeling of the human middle ear for precise simulation of middle-ear behavior. Further, established methodology in this study may be applicable to imaging of other middle-ear structures.


Assuntos
Ligamentos/diagnóstico por imagem , Microscopia de Fluorescência por Excitação Multifotônica , Estribo/diagnóstico por imagem , Colágeno/análise , Elastina/análise , Feminino , Humanos , Ligamentos/química , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudo de Prova de Conceito , Reprodutibilidade dos Testes , Estribo/química , Microtomografia por Raio-X
17.
J Phys Condens Matter ; 31(40): 405503, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31220821

RESUMO

We report a successful combination of magnetic force linear response theory with quasiparticle self-consistent GW method. The self-consistently determined wavefunctions and eigenvalues can just be used for the conventional magnetic force calculations. While its formulation is straightforward, this combination provides a way to investigate the effect of GW self-energy on the magnetic interactions which can hardly be quantified due to the limitation of current GW methodology in calculating the total energy difference in between different magnetic phases. In ferromagnetic 3d elements, GW self-energy slightly reduces the d bandwidth and enhances the interactions while the same long-range feature is maintained. In antiferromagnetic transition-metal monoxides, QSGW significantly reduces the interaction strengths by enlarging the gap. Orbital-dependent magnetic force calculations show that the coupling between e g and the nominally-empty 4s orbital is noticeably large in MnO which is reminiscent of the discussion for cuprates regarding the role of Cu-4s state. This combination of magnetic force theory with quasiparticle self-consistent GW can be a useful tool to study various magnetic materials.

18.
Hear Res ; 364: 96-103, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29602590

RESUMO

Recent measurements of vibrational motion to assess sound transmission through ear structures and skull contents have included three-dimensional (3D) behavior. The 3D motion of a point has been described with the three orthogonal components in the 3D space. In this article, a method to represent the 3D velocity with the magnitude and phase of the resultant velocity is introduced. This method was applied to the measurement of cochlear promontory motion as an indication of bone conduction (BC) sound transmission. The promontory motions were measured on the ipsilateral and contralateral sides, and the transcranial attenuation and phase delay of the contralateral side relative to the ipsilateral side were calculated. The transcranial attenuation and phase delay calculated with the maximum magnitudes and corresponding phases of the resultant were a better fit to the interaural threshold difference and transcranial time interval between the ipsilateral and contralateral sides as reported in the literature, than the attenuation and phase delay calculated with any individual Cartesian motion component.


Assuntos
Condução Óssea , Cóclea/fisiologia , Mecanotransdução Celular , Modelos Teóricos , Estimulação Acústica/instrumentação , Prótese Ancorada no Osso , Cadáver , Cóclea/anatomia & histologia , Auxiliares de Audição , Humanos , Movimento (Física) , Desenho de Prótese , Som , Fatores de Tempo , Vibração
19.
Hear Res ; 370: 94-104, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30343248

RESUMO

OBJECTIVES: Evaluation of the transfer function efficiency of a newly-developed piezo-electric actuator for active subcutaneous bone conduction hearing aid. METHODS: The experiments were conducted on four Thiel embalmed whole head cadaver specimens. A novel actuator based on piezo-electric transduction (PZTA), part of a subcutaneous bone conduction hearing aid device, was sequentially implanted on three locations: 1) Immediately posterior to pinna; 2) 50-60 mm posterior to pinna, approximately the same distance as between the BAHA (bone anchored hearing aid) location and the ear canal, but the same horizontal level as location 1; 3) the traditional BAHA location. Using a single point 3-dimensional laser Doppler vibrometer (LDV) system, three types of motion measurements were performed at the cochlear promontory for each stimulation location: 1) ipsilateral side, 2) contralateral side, 3) measurements 1 and 2 were repeated after mastoidectomy on the ipsilateral side. RESULTS: On average, stimulation at locations 1 and 2 show a trend for higher promontory motion relative to location 3 (BAHA location) above 1 kHz. Stimulation at location 1 had an average improvement of 1-6 dB at 2-4 kHz, and 1-18 dB at 6-8 kHz. The spatial composition of the motion showed significant contributions from both in-plane and out-of-plane (along ear canal) motion components, with in-plane components being dominant at mid and high frequencies for locations 2 and 3. Stimulation at locations 1 and 3 produced similar transcranial attenuation at mid frequencies (0.6-4 kHz), with a potential trend of higher attenuation (seen in 3 or the 4 samples) for location 1 at higher frequencies (>4 kHz). The mastoidectomy affected negatively mostly the high frequencies (6-8 kHz) for stimulation at location 1, with no significant change for location 3. CONCLUSION: The sound transfer function efficacy of a novel subcutaneous bone conduction device has been quantified, and the influence of stimulation location and mastoidectomy have been analyzed based on promontory motion in Thiel-preserved cadaver heads.


Assuntos
Condução Óssea , Prótese Ancorada no Osso , Auxiliares de Audição , Crânio/fisiologia , Estimulação Acústica , Cadáver , Humanos , Mastoidectomia , Teste de Materiais , Movimento (Física) , Desenho de Prótese , Crânio/cirurgia , Som , Vibração
20.
Hear Res ; 357: 1-9, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29149722

RESUMO

BACKGROUND: Intra-operative quantification of the ossicle mobility could provide valuable feedback for the current status of the patient's conductive hearing. However, current methods for evaluation of middle ear mobility are mostly limited to the surgeon's subjective impression through manual palpation of the ossicles. This study investigates how middle ear transfer function is affected by stapes quasi-static stiffness of the ossicular chain. The stiffness of the middle ear is induced by a) using a novel fiber-optic 3-axis force sensor to quantify the quasi-static stiffness of the middle ear, and b) by artificial reduction of stapes mobility due to drying of the middle ear. METHODS: Middle ear transfer function, defined as the ratio of the stapes footplate velocity versus the ear canal sound pressure, was measured with a single point LDV in two conditions. First, a controlled palpation force was applied at the stapes head in two in-plane (superior-inferior or posterior-anterior) directions, and at the incus lenticular process near the incudostapedial joint in the piston (lateral-medial) direction with a novel 3-axis PalpEar force sensor (Sensoptic, Losone, Switzerland), while the corresponding quasi-static displacement of the contact point was measured via a 3-axis micrometer stage. The palpation force was applied sequentially, step-wise in the range of 0.1-20 gF (1-200 mN). Second, measurements were repeated with various stages of stapes fixation, simulated by pre-load on the stapes head or drying of the temporal bone, and with severe ossicle immobilization, simulated by gluing of the stapes footplate. RESULTS: Simulated stapes fixation (forced drying of 5-15 min) severely decreases (20-30 dB) the low frequency (<1 kHz) response of the middle ear, while increasing (5-10 dB) the high frequency (>4 kHz) response. Stapes immobilization (gluing of the footplate) severely reduces (20-40 dB) the low and mid frequency response (<4 kHz) but has lesser effect (<10 dB) at higher frequencies. Even moderate levels of palpation force (<3gF, <30 mN), regardless of direction, have negative effect (10-20 dB) on the low frequency (<2 kHz) response, but with less significant (5-10 dB) effect at higher frequencies. Force-displacement measurements around the incudostapedial joint showed quasi-static stiffness in the range of 200-500 N/m for normal middle ears, and 1000-2500 N/m (5-8-fold increase) after artificially (through forced drying) reducing the middle ear transfer function with 10-25 dB at 1 kHz. CONCLUSION: Effects of the palpation force level and direction, as well as stapes fixation and immobilization have been analyzed based on the measurement of the stapes footplate motion, and controlled application of 3D force and displacement.


Assuntos
Orelha Média/fisiologia , Tecnologia de Fibra Óptica/instrumentação , Fibras Ópticas , Som , Transdutores de Pressão , Estimulação Acústica , Idoso , Idoso de 80 Anos ou mais , Orelha Média/anatomia & histologia , Elasticidade , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Pressão , Estribo/fisiologia , Fatores de Tempo , Vibração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa