Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMC Microbiol ; 16: 6, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26769134

RESUMO

BACKGROUND: Gut bacteria-host interactions have been implicated in the pathogenesis of numerous human diseases, but few mechanisms have been described. The genetically tractable nematode worm Caenorhabditis elegans can be infected with pathogenic bacteria, such as the human gut commensal Enterococcus faecalis, via feeding, making it a good model for studying these interactions. RESULTS: An RNAi screen of 17 worm candidate genes revealed that knockdown of the transcription factor nhr-49, a master regulator of fat metabolism, shortens worm lifespan upon infection with E. faecalis (and other potentially pathogenic bacteria) compared to Escherichia coli. The functional similarity of nhr-49 to the mammalian peroxisome proliferator-activated receptors (PPARs) suggests that this is mediated through a link between fatty acid metabolism and innate immunity. In addition, knockdown of either dlg-1 or ajm-1, which encode physically interacting proteins in the C. elegans epithelial junction, also reduces worm lifespan upon E. faecalis challenge, demonstrating the importance of the intestinal epithelium as an immune barrier. CONCLUSIONS: The protective roles identified for nhr-49, dlg-1, and ajm-1 suggest mechanistic interactions between the gut microbiota, host fatty acid metabolism, innate immunity, and epithelial junction integrity that are remarkably similar to those implicated in human metabolic and inflammatory diseases.


Assuntos
Caenorhabditis elegans/microbiologia , Enterococcus faecalis/fisiologia , Gorduras/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Mucosa Intestinal/microbiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal , Infecções por Bactérias Gram-Positivas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Mucosa Intestinal/metabolismo , Masculino
2.
J Gen Virol ; 96(12): 3470-3483, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407694

RESUMO

Human respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in children ,2 years of age. Little is known about RSV intra-host genetic diversity over the course of infection or about the immune pressures that drive RSV molecular evolution. We performed whole-genome deep-sequencing on 53 RSV-positive samples (37 RSV subgroup A and 16 RSV subgroup B) collected from the upper airways of hospitalized children in southern Vietnam over two consecutive seasons. RSV A NA1 and RSV B BA9 were the predominant genotypes found in our samples, consistent with other reports on global RSV circulation during the same period. For both RSV A and B, the M gene was the most conserved, confirming its potential as a target for novel therapeutics. The G gene was the most variable and was the only gene under detectable positive selection. Further, positively selected sites inG were found in close proximity to and in some cases overlapped with predicted glycosylation motifs, suggesting that selection on amino acid glycosylation may drive viral genetic diversity. We further identified hotspots and coldspots of intra-host genetic diversity in the RSV genome, some of which may highlight previously unknown regions of functional importance.


Assuntos
Evolução Molecular , Genoma Viral/genética , Infecções por Vírus Respiratório Sincicial/veterinária , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Sequência de Aminoácidos , Criança , Regulação Viral da Expressão Gênica/fisiologia , Variação Genética , Genótipo , Humanos , Modelos Moleculares , Filogenia , Conformação Proteica , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vietnã/epidemiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
3.
PLoS Pathog ; 8(3): e1002631, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479185

RESUMO

The female Aedes aegypti salivary gland plays a pivotal role in bloodmeal acquisition and reproduction, and thereby dengue virus (DENV) transmission. It produces numerous immune factors, as well as immune-modulatory, vasodilatory, and anti-coagulant molecules that facilitate blood-feeding. To assess the impact of DENV infection on salivary gland physiology and function, we performed a comparative genome-wide microarray analysis of the naïve and DENV infection-responsive A. aegypti salivary gland transcriptomes. DENV infection resulted in the regulation of 147 transcripts that represented a variety of functional classes, including several that are essential for virus transmission, such as immunity, blood-feeding, and host-seeking. RNAi-mediated gene silencing of three DENV infection-responsive genes--a cathepsin B, a putative cystatin, and a hypothetical ankyrin repeat-containing protein--significantly modulated DENV replication in the salivary gland. Furthermore, silencing of two DENV infection-responsive odorant-binding protein genes (OBPs) resulted in an overall compromise in blood acquisition from a single host by increasing the time for initiation of probing and the probing time before a successful bloodmeal. We also show that DENV established an extensive infection in the mosquito's main olfactory organs, the antennae, which resulted in changes of the transcript abundance of key host-seeking genes. DENV infection, however, did not significantly impact probing initiation or probing times in our laboratory infection system. Here we show for the first time that the mosquito salivary gland mounts responses to suppress DENV which, in turn, modulates the expression of chemosensory-related genes that regulate feeding behavior. These reciprocal interactions may have the potential to affect DENV transmission between humans.


Assuntos
Aedes/fisiologia , Vírus da Dengue/imunologia , Dengue/imunologia , Glândulas Salivares/imunologia , Aedes/virologia , Animais , Linhagem Celular , Dengue/genética , Dengue/virologia , Vírus da Dengue/patogenicidade , Comportamento Alimentar/fisiologia , Feminino , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Glândulas Salivares/virologia , Ativação Transcricional
4.
Lancet Planet Health ; 8(9): e617-e628, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39243778

RESUMO

BACKGROUND: Incompatible insect technique (IIT) coupled with sterile insect technique (SIT) via the release of sterile male Wolbachia-infected mosquitoes is a promising tool for Aedes-borne disease control. Yet, real-world evidence on the suppressive effectiveness of IIT-SIT on mosquito abundance remains mostly limited to small semi-rural village and suburban localities over short trial durations. However, a large proportion of Aedes-borne diseases occur in dense, urban, and high-rise locations, limiting the applicability of previous studies for these settings with high disease burden. The sustainability and use of this technology over multiple years is also unknown. METHODS: In this synthetic control study, we conducted a large-scale, field trial of IIT-SIT targeting Aedes aegypti among high-rise public housing estates in Singapore, an equatorial city state. Routinely collected data from a large, nationwide surveillance system of 57 990 unique mosquito traps, combined with a high-dimensional set of anthropogenic and environmental confounders were collected to ascertain mosquito abundance and its key drivers. Four townships were selected as the intervention groups (approximate population size of 607 872 residents as of 2022), wherein interventions that combined ITT with SIT over the course of the study period were conducted. Townships were subject to releases of wAlbB-SG male A aegypti mosquitoes twice a week. Data were assessed over the course of epidemiological weeks (EWs), which provide the finest temporal resolution of recorded Wolbachia release schedule and mosquito abundance data. A novel synthetic control framework was then developed to account for the non-randomised and staggered adoption setting of the intervention across trial sectors to identify the direct suppressive effectiveness of IIT-SIT on female A aegypti populations, the spillover effects in non-release areas, and the effect of the intervention on other mosquito populations such as Aedes albopictus. Furthermore, we recalculated effectiveness in terms of calendar time, time since intervention, and over multiple sites to examine heterogeneities in IIT-SIT effectiveness. FINDINGS: Between EW27 2018 and EW26 2022, Wolbachia releases were conducted across 117 sectors, of which 97 had sufficient trap data, which were collected between EW8 2019 and EW26 2022. We found that Wolbachia-based IIT-SIT reduced wild-type female A aegypti populations by a mean of 62·01% (95% CI 60·68 to 63·26) by 3 months, 78·40% (77·56 to 79·18) by 6 months, and 91·32% (90·95 to 91·66) by at least 18 months of releases. We also found a smaller but non-negligible spillover suppression effect that gradually increased over time (mean spillover intervention effectiveness 61·02% [95% CI 57·89 to 63·72] in adjacent, non-intervention sectors). Although no consistent change in A albopictus populations was seen across the four intervention townships after Wolbachia releases, the average intervention effectiveness on the A albopictus population across all release sectors was -25·80% (95% CI -30·93 to -21·05), which was driven by increases in two towns. INTERPRETATION: Our results demonstrate the potential of IIT-SIT for strengthening long-term, large-scale vector control in tropical cities, where dengue burden is the greatest. The effect of these interventions in different geographical settings should be assessed in future work. FUNDING: Singapore's Ministry of Finance, Ministry of Sustainability and the Environment, National Environment Agency, and National Robotics Program.


Assuntos
Aedes , Controle de Mosquitos , Mosquitos Vetores , Wolbachia , Aedes/microbiologia , Animais , Wolbachia/fisiologia , Singapura , Controle de Mosquitos/métodos , Masculino , Feminino , Mosquitos Vetores/microbiologia , Controle Biológico de Vetores/métodos
5.
Lancet Microbe ; 5(5): e422-e432, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342109

RESUMO

BACKGROUND: Due to the absence of available therapeutics and good vaccines, vector control solutions are needed to mitigate the spread of dengue. Matings between male Aedes aegypti mosquitoes infected with the wAlbB strain of Wolbachia and wildtype females yield non-viable eggs. We evaluated the efficacy of releasing wAlbB-infected A aegypti male mosquitoes to suppress dengue incidence. METHODS: In this synthetic control study, we conducted large-scale field trials in Singapore involving release of wAlbB-infected A aegypti male mosquitoes for dengue control via vector population suppression, from epidemiological week (EW) 27, 2018, to EW 26, 2022. We selected two large towns (Yishun and Tampines) to adopt an expanding release strategy and two smaller towns (Bukit Batok and Choa Chu Kang) to adopt a targeted-release approach. Releases were conducted two times a week in high-rise public housing estates. All intervention and control locations practised the same baseline dengue control protocol. The main outcome was weekly dengue incidence rate caused by any dengue virus serotype. We used incidence data collected by the Singapore Ministry of Health to assess the efficacy of the interventions. To compare interventions, we used the synthetic control method to generate appropriate counterfactuals for the intervention towns using a weighted combination of 30 control towns between EW 1, 2014 and EW 26, 2022. FINDINGS: Our study comprised an at-risk population of 607 872 individuals living in intervention sites and 3 894 544 individuals living in control sites. Interventions demonstrated up to 77·28% (121/156, 95% CI 75·81-78·58) intervention efficacy despite incomplete coverage across all towns until EW 26, 2022. Intervention efficacies increased as release coverage increased across all intervention sites. Releases led to 2242 (95% CI 2092-2391) fewer cases per 100 000 people in intervention sites during the study period. Secondary analysis showed that these intervention effects were replicated across all age groups and both sexes for intervention sites. INTERPRETATION: Our results demonstrated the potential of Wolbachia-mediated incompatible insect technique for strengthening dengue control in tropical cities, where dengue burden is the greatest. FUNDING: Singapore Ministry of Finance, Ministry of Sustainability, and the National Environment Agency, and the Singapore National Robotics Program.


Assuntos
Aedes , Dengue , Controle de Mosquitos , Mosquitos Vetores , Wolbachia , Wolbachia/fisiologia , Dengue/prevenção & controle , Dengue/epidemiologia , Dengue/transmissão , Singapura/epidemiologia , Animais , Aedes/microbiologia , Aedes/virologia , Incidência , Feminino , Masculino , Controle de Mosquitos/métodos , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Humanos , Vírus da Dengue , Controle Biológico de Vetores/métodos
6.
Trials ; 25(1): 400, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902790

RESUMO

BACKGROUND: This trial is a parallel, two-arm, non-blinded cluster randomised controlled trial that is under way in Singapore, with the aim of measuring the efficacy of male Wolbachia-infected Aedes aegypti deployments in reducing dengue incidence in an endemic setting with all four dengue serotypes in circulation. The trial commenced in July 2022 and is expected to conclude in September 2024. The original study protocol was published in December 2022. Here, we describe amendments that have been made to the study protocol since commencement of the trial. METHODS: The key protocol amendments are (1) addition of an explicit definition of Wolbachia exposure for residents residing in intervention sites based on the duration of Wolbachia exposure at point of testing, (2) incorporation of a high-dimensional set of anthropogenic and environmental characteristics in the analysis plan to adjust for baseline risk factors of dengue transmission, and (3) addition of alternative statistical analyses for endpoints to control for post hoc imbalance in cluster-based environmental and anthropogenic characteristics. DISCUSSION: The findings from this study will provide the first experimental evidence for the efficacy of releasing male-Wolbachia infected mosquitoes to reduce dengue incidence in a cluster-randomised controlled trial. The trial will conclude in 2024 and results will be reported shortly thereafter. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT05505682. Registered on 16 August 2022. Retrospectively registered. Last updated 11 November 2023.


Assuntos
Aedes , Dengue , Mosquitos Vetores , Ensaios Clínicos Controlados Aleatórios como Assunto , Wolbachia , Dengue/prevenção & controle , Dengue/epidemiologia , Dengue/transmissão , Animais , Singapura/epidemiologia , Masculino , Aedes/microbiologia , Aedes/virologia , Humanos , Incidência , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Controle de Mosquitos/métodos , Feminino , Controle Biológico de Vetores/métodos
7.
J Travel Med ; 31(7)2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39105274

RESUMO

BACKGROUND: Matings between male Aedes aegypti mosquitoes infected with wAlbB strain of Wolbachia and wildtype females yield non-viable eggs. We evaluated the efficacy of releasing wAlbB-infected Ae. aegypti male mosquitoes to suppress dengue. METHODS: We specified the protocol of a two-arm cluster-randomized test-negative controlled trial (cRCT) and emulated it using a nationally representative test-negative/positive database of individuals reporting for febrile illness to any public hospital, general practitioner or polyclinic. We retrospectively built a cohort of individuals who reside in Wolbachia locations vs a comparator control group who do not reside in Wolbachia locations, using a nationally representative database of all individuals whom report for febrile illness and were tested for dengue at the Environmental Health Institute/hospital laboratories/commercial diagnostic laboratories, through general practitioner clinic, polyclinic or public/private hospital from epidemiological week (EW) 1 2019 to EW26 2022. We emulated a constrained randomization protocol used in cRCTs to balance dengue risk between intervention and control arms in the pre-intervention period. We used the inverse probability weighting approach to further balance the intervention and control groups using a battery of algorithmically selected sociodemographic, environmental and anthropogenic variables. Intention-to-treat analyses were conducted to estimate the risk reduction of dengue given Wolbachia exposure. RESULTS: Intention-to-treat analyses revealed that, compared with controls, Wolbachia releases for 3, 6 and ≥12 months was associated to 47% (95% confidence interval: 25-69%), 44% (33-77%) and 61% (38-78%) protective efficacy against dengue, respectively. When exposed to ≥12 months of Wolbachia releases, protective efficacies ranged from 49% (13-72%) to 77% (60-94%) across years. The proportion of virologically confirmed dengue cases was lower overall in the intervention arm. Protective efficacies were found across all years, age and sex subgroups, with higher durations of Wolbachia exposure associated to greater risk reductions of dengue. CONCLUSION: Results demonstrated that Wolbachia-mediated sterility can strengthen dengue control in tropical cities, where dengue burden is the greatest.


Assuntos
Aedes , Dengue , Wolbachia , Wolbachia/fisiologia , Dengue/prevenção & controle , Dengue/epidemiologia , Dengue/transmissão , Animais , Humanos , Aedes/microbiologia , Masculino , Feminino , Singapura/epidemiologia , Adulto , Estudos Retrospectivos , Controle de Mosquitos/métodos , Mosquitos Vetores/microbiologia , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Criança
8.
PLoS Negl Trop Dis ; 17(6): e0011400, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37347767

RESUMO

This paper summarises the lessons learnt in dengue epidemiology, risk factors, and prevention in Singapore over the last half a century, during which Singapore evolved from a city of 1.9 million people to a highly urban globalised city-state with a population of 5.6 million. Set in a tropical climate, urbanisation among green foliage has created ideal conditions for the proliferation of Aedes aegypti and Aedes albopictus, the mosquito vectors that transmit dengue. A vector control programme, largely for malaria, was initiated as early as 1921, but it was only in 1966 that the Vector Control Unit (VCU) was established to additionally tackle dengue haemorrhagic fever (DHF) that was first documented in the 1960s. Centred on source reduction and public education, and based on research into the bionomics and ecology of the vectors, the programme successfully reduced the Aedes House Index (HI) from 48% in 1966 to <5% in the 1970s. Further enhancement of the programme, including through legislation, suppressed the Aedes HI to around 1% from the 1990s. The current programme is characterised by 4 key features: (i) proactive inter-epidemic surveillance and control that is stepped up during outbreaks; (ii) risk-based prevention and intervention strategies based on advanced data analytics; (iii) coordinated inter-sectoral cooperation between the public, private, and people sectors; and (iv) evidence-based adoption of new tools and strategies. Dengue seroprevalence and force of infection (FOI) among residents have substantially and continuously declined over the 5 decades. This is consistent with the observation that dengue incidence has been delayed to adulthood, with severity highest among the elderly. Paradoxically, the number of reported dengue cases and outbreaks has increased since the 1990s with record-breaking epidemics. We propose that Singapore's increased vulnerability to outbreaks is due to low levels of immunity in the population, constant introduction of new viral variants, expanding urban centres, and increasing human density. The growing magnitude of reported outbreaks could also be attributed to improved diagnostics and surveillance, which at least partially explains the discord between rising trend in cases and the continuous reduction in dengue seroprevalence. Changing global and local landscapes, including climate change, increasing urbanisation and global physical connectivity are expected to make dengue control even more challenging. The adoption of new vector surveillance and control tools, such as the Gravitrap and Wolbachia technology, is important to impede the growing threat of dengue and other Aedes-borne diseases.


Assuntos
Aedes , Dengue , Idoso , Animais , Humanos , Estudos Soroepidemiológicos , Singapura/epidemiologia , Mudança Climática , Dengue/epidemiologia , Dengue/prevenção & controle
9.
Int J Infect Dis ; 131: 40-45, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36933611

RESUMO

We conducted a prospective environmental surveillance study to investigate the air, surface, dust, and water contamination of a room occupied by a patient infected with mpox virus (MPXV) at various stages of the illness. The patient tested positive for MPXV from a throat swab and skin lesions. Environmental sampling was conducted in a negative pressure room with 12 unidirectional high efficiency particulate air filter (HEPA) air changes per hour and daily cleaning of the surfaces. A total of 179 environmental samples were collected on days 7, 8, 13, and 21 of illness. Among the days of sampling, air, surface, and dust contamination showed the highest contamination rates on day 7 and 8 of illness, with a gradual decline to the lowest contamination level by day 21. Viable MPXV was isolated from surfaces and dust samples and no viable virus was isolated from the air and water samples.


Assuntos
Monkeypox virus , Quartos de Pacientes , Humanos , Poeira , Monkeypox virus/isolamento & purificação , Estudos Prospectivos , Água
10.
Proc Natl Acad Sci U S A ; 106(42): 17841-6, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19805194

RESUMO

Here, we show that the major mosquito vector for dengue virus uses the JAK-STAT pathway to control virus infection. Dengue virus infection in Aedes aegypti mosquitoes activates the JAK-STAT immune signaling pathway. The mosquito's susceptibility to dengue virus infection increases when the JAK-STAT pathway is suppressed through RNAi depletion of its receptor Domeless (Dome) and the Janus kinase (Hop), whereas mosquitoes become more resistant to the virus when the negative regulator of the JAK-STAT pathway, PIAS, is silenced. The JAK-STAT pathway exerts its anti-dengue activity presumably through one or several STAT-regulated effectors. We have identified, and partially characterized, two JAK-STAT pathway-regulated and infection-responsive dengue virus restriction factors (DVRFs) that contain putative STAT-binding sites in their promoter regions. Our data suggest that the JAK-STAT pathway is part of the A. aegypti mosquito's anti-dengue defense and may act independently of the Toll pathway and the RNAi-mediated antiviral defenses.


Assuntos
Aedes/genética , Aedes/virologia , Vírus da Dengue/patogenicidade , Proteínas de Insetos/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Aedes/imunologia , Animais , Evolução Biológica , Vírus da Dengue/imunologia , Perfilação da Expressão Gênica , Genes de Insetos , Imunidade Inata/genética , Proteínas de Insetos/genética , Insetos Vetores/genética , Insetos Vetores/imunologia , Insetos Vetores/virologia , Janus Quinases/genética , Modelos Biológicos , Família Multigênica , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Interferência de RNA , Fatores de Transcrição STAT/genética , Transdução de Sinais
11.
Sci Total Environ ; 850: 158036, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973530

RESUMO

BACKGROUND: Perfluoroalkyl substances (PFAS) are widely used synthetic aliphatic compounds. This systematic review aims to assess PFAS associations with low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), total cholesterol (TC) and total triglyceride (TG) concentrations in human populations. METHOD: We systematically searched four online databases, PubMed, Scopus, Embase, and Cochrane Library for relevant peer-reviewed English language articles published until July 2021. Additional relevant articles identified were also included in the search results. We categorised populations into adults (≥18 years old) and children. Primary findings were the associations between PFAS concentrations and LDL, HDL, TC, and TG concentrations in the serum, plasma, or whole blood; secondary findings were the associations between PFAS concentrations and the odds of lipid-related health outcomes. Quantitative synthesis was done by vote counting of the effect directions between concentrations of PFAS and lipids/health outcomes, repeated on articles with sample size >1000. Sign tests were performed to assess the statistical significance of the differences between positive and negative associations. Sensitivity analysis was performed by separating out articles with populations having high concentrations of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). Quality was assessed with the STROBE checklist and NHBLI Study Quality Assessment Tool. RESULTS: A total of 58 articles were included for review. There was evidence that PFAS exposure is associated with higher concentrations of LDL, HDL, and TC, particularly for PFOA-LDL, PFOA-TC, PFOS-TC, and PFNA-LDL. Associations between PFAS and TG tended to be negative, especially for perfluoroundecanoic acid (PFUnDA). Associations between PFAS concentration and the odds of secondary outcomes generally supported a positive association between PFAS and cholesterol concentrations. CONCLUSION: We found evidence of associations between the concentrations of some PFAS-lipid pairs in human populations. Future research should be conducted on the less well-studied PFAS to explore their effects on human health and in regions where such studies are currently lacking. (300 words).


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Adolescente , Adulto , Caprilatos , Criança , Colesterol , HDL-Colesterol , LDL-Colesterol , Estudos Epidemiológicos , Humanos , Lipídeos , Triglicerídeos
12.
PLoS Negl Trop Dis ; 16(11): e0010910, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367848

RESUMO

Singapore, a highly urbanized Asian tropical country that experiences periodic dengue outbreaks, is piloting field releases of male Wolbachia-carrying Aedes aegypti mosquitoes with the aim of suppressing urban populations of the primary dengue vector Aedes aegypti. This study proposes and assesses a model to explain the roles of hesitancy and receptivity towards Project Wolbachia-Singapore in influencing reactive mosquito prevention behaviors (reactive behaviors) towards the release of Wolbachia-Aedes mosquitoes for residents living in the release sites. Interestingly, both hesitancy and receptivity predicted greater instances of reactive behaviors. The model also examines the roles of general knowledge about Wolbachia technology, perceived severity of mosquito bites, perceived density of mosquitoes, and social responsibility as predictors of hesitancy, receptivity, and reactive behaviors towards the release of Wolbachia-Aedes mosquitoes. Hesitancy towards the project mediated the effects of general knowledge, perceived severity of mosquito bites, and perceived density of mosquitoes on reactive behaviors towards the releases, although receptivity towards the project did not. Having less knowledge about Project Wolbachia-Singapore was associated with higher hesitancy towards the project and higher likelihood of performing reactive behaviors towards the releases. Individuals who perceive mosquito bites to be more severe and think that there are more mosquitoes in their living environments were also more likely to be hesitant about the project and practice reactive behaviors. However, both hesitancy and receptivity towards the project mediated the effect of social responsibility on reactive behaviors. Receptivity towards the project was driven by social responsibility, which was also associated with reduced hesitancy towards the project. Our findings suggest that, to address the hesitancy reported by a minority of participants, future outreach efforts should focus on strengthening the public's sense of social responsibility and on tailored education campaigns targeting groups with low levels of knowledge of the project.


Assuntos
Aedes , Dengue , Mordeduras e Picadas de Insetos , Wolbachia , Animais , Masculino , Humanos , Dengue/prevenção & controle , Mosquitos Vetores
13.
Viruses ; 14(6)2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35746601

RESUMO

The Incompatible Insect Technique (IIT) strategy involves the release of male mosquitoes infected with the bacterium Wolbachia. Regular releases of male Wolbachia-infected mosquitoes can lead to the suppression of mosquito populations, thereby reducing the risk of transmission of vector-borne diseases such as dengue. However, due to imperfect sex-sorting under IIT, fertile Wolbachia-infected female mosquitoes may potentially be unintentionally released into the environment, which may result in replacement and failure to suppress the mosquito populations. As such, mitigating Wolbachia establishment requires a combination of IIT with other strategies. We introduced a simple compartmental model to simulate ex-ante mosquito population dynamics subjected to a Wolbachia-IIT programme. In silico, we explored the risk of replacement, and strategies that could mitigate the establishment of the released Wolbachia strain in the mosquito population. Our results suggest that mitigation may be achieved through the application of a sterile insect technique. Our simulations indicate that these interventions do not override the intended wild type suppression of the IIT approach. These findings will inform policy makers of possible ways to mitigate the potential establishment of Wolbachia using the IIT population control strategy.


Assuntos
Aedes , Wolbachia , Aedes/microbiologia , Animais , Feminino , Masculino , Controle de Mosquitos/métodos , Mosquitos Vetores/microbiologia , Dinâmica Populacional
14.
Trials ; 23(1): 1023, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528590

RESUMO

BACKGROUND: Dengue is a severe environmental public health challenge in tropical and subtropical regions. In Singapore, decreasing seroprevalence and herd immunity due to successful vector control has paradoxically led to increased transmission potential of the dengue virus. We have previously demonstrated that incompatible insect technique coupled with sterile insect technique (IIT-SIT), which involves the release of X-ray-irradiated male Wolbachia-infected mosquitoes, reduced the Aedes aegypti population by 98% and dengue incidence by 88%. This novel vector control tool is expected to be able to complement current vector control to mitigate the increasing threat of dengue on a larger scale. We propose a multi-site protocol to study the efficacy of IIT-SIT at reducing dengue incidence. METHODS/DESIGN: The study is designed as a parallel, two-arm, non-blinded cluster-randomized (CR) controlled trial to be conducted in high-rise public housing estates in Singapore, an equatorial city-state. The aim is to determine whether large-scale deployment of male Wolbachia-infected Ae. aegypti mosquitoes can significantly reduce dengue incidence in intervention clusters. We will use the CR design, with the study area comprising 15 clusters with a total area of 10.9 km2, covering approximately 722,204 residents in 1713 apartment blocks. Eight clusters will be randomly selected to receive the intervention, while the other seven will serve as non-intervention clusters. Intervention efficacy will be estimated through two primary endpoints: (1) odds ratio of Wolbachia exposure distribution (i.e., probability of living in an intervention cluster) among laboratory-confirmed reported dengue cases compared to test-negative controls and (2) laboratory-confirmed reported dengue counts normalized by population size in intervention versus non-intervention clusters. DISCUSSION: This study will provide evidence from a multi-site, randomized controlled trial for the efficacy of IIT-SIT in reducing dengue incidence. The trial will provide valuable information to estimate intervention efficacy for this novel vector control approach and guide plans for integration into national vector control programs in dengue-endemic settings. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT05505682 . Registered on 16 August 2022. Retrospectively registered.


Assuntos
Aedes , Dengue , Wolbachia , Animais , Masculino , Humanos , Controle de Mosquitos/métodos , Dengue/epidemiologia , Dengue/prevenção & controle , Mosquitos Vetores , Incidência , Estudos Soroepidemiológicos , Singapura/epidemiologia , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
PLOS Glob Public Health ; 1(10): e0000024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36962069

RESUMO

The release of Wolbachia-infected mosquitoes is a promising disease intervention strategy that aims to control dengue and other arboviral infections. While early field trials and modelling studies suggest promising epidemiological and entomological outcomes, the overall cost effectiveness of the technology is not well studied in a resource rich setting nor under the suppression approach that aims to suppress the wild-type mosquito population through the release of Wolbachia-infected males. We used economical and epidemiological data from 2010 to 2020 to first ascertain the economic and health costs of dengue in Singapore, a high income nation where dengue is hyper-endemic. The hypothetical cost effectiveness of a national Wolbachia suppression program was then evaluated historically from 2010 to 2020. We estimated that the average economic impact of dengue in Singapore from 2010 to 2020 in constant 2010US$ ranged from $1.014 to $2.265 Billion. Using empirically derived disability weights, we estimated a disease burden of 7,645-21,262 DALYs from 2010-2020. Under an assumed steady-state running cost of a national Wolbachia suppression program in Singapore, we conservatively estimate that Wolbachia would cost an estimated $50,453-$100,907 per DALYs averted and would lead to an estimated $329.40 Million saved in economic costs over 2010 to 2020 under 40% intervention efficacy. Wolbachia releases in Singapore are expected to be highly cost-effective and its rollout must be prioritised to reduce the onward spread of dengue.

16.
PLoS Negl Trop Dis ; 15(8): e0009562, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34379641

RESUMO

BACKGROUND: Targeting interventions to areas that have recently experienced cases of disease is one strategy to contain outbreaks of infectious disease. Such case-area targeted interventions (CATI) have become an increasingly popular approach for dengue control but there is little evidence to suggest how precisely targeted or how recent cases need to be, to mount an effective response. The growing interest in the development of prophylactic and therapeutic drugs for dengue has also given new relevance for CATI strategies to interrupt transmission or deliver early treatment. METHODS/PRINCIPAL FINDINGS: Here we develop a patch-based mathematical model of spatial dengue spread and fit it to spatiotemporal datasets from Singapore. Simulations from this model suggest CATI strategies could be effective, particularly if used in lower density areas. To maximise effectiveness, increasing the size of the radius around an index case should be prioritised even if it results in delays in the intervention being applied. This is partially because large intervention radii ensure individuals receive multiple and regular rounds of drug dosing or vector control, and thus boost overall coverage. Given equivalent efficacy, CATIs using prophylactic drugs are predicted to be more effective than adult mosquito-killing vector control methods and may even offer the possibility of interrupting individual chains of transmission if rapidly deployed. CATI strategies quickly lose their effectiveness if baseline transmission increases or case detection rates fall. CONCLUSIONS/SIGNIFICANCE: These results suggest CATI strategies can play an important role in dengue control but are likely to be most relevant for low transmission areas where high coverage of other non-reactive interventions already exists. Controlled field trials are needed to assess the field efficacy and practical constraints of large operational CATI strategies.


Assuntos
Administração de Caso , Dengue/epidemiologia , Dengue/terapia , Modelos Teóricos , Animais , Simulação por Computador , Dengue/prevenção & controle , Dengue/transmissão , Surtos de Doenças/prevenção & controle , Humanos , Controle de Mosquitos/métodos , Análise de Regressão , Singapura
17.
Artigo em Inglês | MEDLINE | ID: mdl-34831751

RESUMO

In 2016, Singapore introduced the release of male Wolbachia-Aedes mosquitoes to complement vector control efforts and suppress Aedes aegypti mosquitoes in selected study sites. With ongoing expansion of Project Wolbachia-Singapore to cover larger areas, a household-based survey was conducted between July 2019 to February 2020 in two Project Wolbachia study sites using a structured questionnaire, to evaluate current sentiments and assess the need for enhanced public messaging and engagement. The association of factors that influence awareness, attitudes, and knowledge towards the use of Wolbachia-Aedes technology was analysed using Pearson's Chi-square test and binary logistic regression. Of 500 respondents, 74.8% were aware of Project Wolbachia-Singapore. Comparatively, the level of knowledge on Wolbachia-Aedes technology was lower, suggesting knowledge gaps that require enhanced communication and messaging to address misinformation. Longer exposure to the project predicted greater awareness, whereas higher education levels predicted higher knowledge levels. Younger age groups and higher education levels were associated with high acceptance towards the project. High levels of trust and acceptance towards the project were also observed across the population. The public's positive perception of the project is a testament to the effective public communication undertaken to date and will facilitate programme expansion.


Assuntos
Aedes , Dengue , Wolbachia , Animais , Atitude , Masculino , Mosquitos Vetores , Tecnologia
18.
PLoS Negl Trop Dis ; 14(8): e0008428, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32853197

RESUMO

Vector-borne diseases are a major cause of morbidity and mortality worldwide. Aedes-borne diseases, in particular, including dengue, chikungunya, yellow fever, and Zika, are increasing at an alarming rate due to urbanisation, population movement, weak vector control programmes, and climate change. The World Health Organization calls for strengthening of vector control programmes in line with the Global Vector Control Response (GVCR) strategy, and many vector control programmes are transitioning to this new approach. The Singapore dengue control programme, situated within the country's larger vision of a clean, green, and sustainable environment for the health and well-being of its citizens, provides an excellent example of the GVCR approach in action. Since establishing vector control operations in the 1960s, the Singapore dengue control programme succeeded in reducing the dengue force of infection 10-fold by the 1990s and has maintained it at low levels ever since. Key to this success is consideration of dengue as an environmental disease, with a strong focus on source reduction and other environmental management methods as the dominant vector control strategy. The programme collaborates closely with other government ministries, as well as town councils, communities, the private sector, and academic and research institutions. Community engagement programmes encourage source reduction, and house-to-house inspections accompanied by a strong legislative framework with monetary penalties help to support compliance. Strong vector and epidemiological surveillance means that routine control activities can be heightened to specifically target dengue clusters. Despite its success, the programme continues to innovate to tackle challenges such as climate change, low herd immunity, and manpower constraints. Initiatives include development of novel vector controls such as Wolbachia-infected males and spatiotemporal models for dengue risk assessment. Lessons learnt from the Singapore programme can be applied to other settings, even those less well-resourced than Singapore, for more effective vector control.


Assuntos
Dengue/prevenção & controle , Controle de Mosquitos/métodos , Controle de Mosquitos/organização & administração , Aedes/virologia , Animais , Participação da Comunidade , Dengue/epidemiologia , Humanos , Mosquitos Vetores/virologia , Singapura/epidemiologia
19.
PLoS Negl Trop Dis ; 14(10): e0008706, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33095767

RESUMO

Prostaglandins (PGs) are immuno-active lipids that mediate the immune response in invertebrates and vertebrates. In insects, PGs play a role on different physiological processes such as reproduction, ion transport and regulation of cellular immunity. However, it is unclear whether PGs play a role in invertebrate's humoral immunity, and, if so, which immune signaling pathways would be modulated by PGs. Here, we show that Aedes aegypti gut microbiota and Gram-negative bacteria challenge induces prostaglandin production sensitive to an irreversible inhibitor of the vertebrate cyclooxygenase, acetylsalicylic acid (ASA). ASA treatment reduced PG synthesis and is associated with decreased expression of components of the Toll and IMD immune pathways, thereby rendering mosquitoes more susceptible to both bacterial and viral infections. We also shown that a cytosolic phospholipase (PLAc), one of the upstream regulators of PG synthesis, is induced by the microbiota in the midgut after blood feeding. The knockdown of the PLAc decreased prostaglandin production and enhanced the replication of Dengue in the midgut. We conclude that in Ae. aegypti, PGs control the amplitude of the immune response to guarantee an efficient pathogen clearance.


Assuntos
Aedes/virologia , Vírus da Dengue/fisiologia , Imunidade Humoral , Prostaglandinas/metabolismo , Aedes/imunologia , Animais , Linhagem Celular , Vírus da Dengue/imunologia , Feminino , Regulação Enzimológica da Expressão Gênica , Interações Hospedeiro-Patógeno , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Prostaglandinas/genética
20.
Insect Sci ; 26(4): 635-648, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29389079

RESUMO

Aedes (Stegomyia) aegypti, the principal global vector of dengue viruses, has differences in its susceptibility to dengue virus infection. We compared the global expression of genes in the midguts of Colombian Ae. aegypti dengue-susceptible (Cali-S) and dengue-refractory (Cali-MIB) field derived strains after ingesting either a sugarmeal, a bloodmeal, or a bloodmeal containing dengue virus serotype 2 (DENV-2). Microarray-based transcriptome analysis among treatments indicated a total of 4725 transcripts with differential expression between the two strains. Eleven genes were selected from different functional groups based on their significant up or down expression levels as well as reports in the literature suggesting they are associated with dengue virus elimination. We measured mRNA abundance of these 11 genes at 0, 8, 24, and 36 h postinfection using quantitative real time PCR (qPCR) to confirm the microarray results and assess any temporal patterns. Four genes were selected (Gram-negative binding protein-GNBP [AAEL009176], Niemann Pick Type-C2-NPC2 [AAEL015136], Keratinocyte lectin [AAEL009842], and Cathepsin-b [AAEL007585]) for knockdown experiments using RNA interference (RNAi) methodology to determine the phenotype (DENV-2 susceptible or refractory). Silencing GNBP, Cathepsin-b and Keratinocyte lectin reduced the percentage of mosquitoes with disseminated virus in the Cali-S strain to 8%, 20%, and 12% respectively compared with 96% in the controls. Silencing of NPC2 increased the percentage of mosquitos with disseminated virus infections in Cali-MIB to 66% compared with 35% in the controls. This study provides insight into genes that may contribute to the Cali-S susceptible and Cali-MIB refractory phenotypes in Ae. aegypti.


Assuntos
Aedes/genética , Vírus da Dengue/imunologia , Interações Hospedeiro-Patógeno/genética , Proteínas de Insetos/fisiologia , Mosquitos Vetores/genética , Aedes/imunologia , Aedes/virologia , Animais , Feminino , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/imunologia , Mosquitos Vetores/imunologia , Mosquitos Vetores/virologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa