Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Evol Dev ; 11(3): 260-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19469853

RESUMO

Although many similarities in arthropod CNS development exist, differences in axonogenesis and the formation of midline cells, which regulate axon growth, have been observed. For example, axon growth patterns in the ventral nerve cord of Artemia franciscana differ from that of Drosophila melanogaster. Despite such differences, conserved molecular marker expression at the midline of several arthropod species indicates that midline cells may be homologous in distantly related arthropods. However, data from additional species are needed to test this hypothesis. In this investigation, nerve cord formation and the putative homology of midline cells were examined in distantly related arthropods, including: long- and short-germ insects (D. melanogaster, Aedes aeygypti, and Tribolium castaneum), branchiopod crustaceans (A. franciscana and Triops longicauditus), and malacostracan crustaceans (Porcellio laevis and Parhyale hawaiensis). These comparative analyses were aided by a cross-reactive antibody generated against the Netrin (Net) protein, a midline cell marker and regulator of axonogenesis. The mechanism of nerve cord formation observed in Artemia is found in Triops, another branchiopod, but is not found in the other arthropods examined. Despite divergent mechanisms of midline cell formation and nerve cord development, Net accumulation is detected in a well-conserved subset of midline cells in branchiopod crustaceans, malacostracan crustaceans, and insects. Notably, the Net accumulation pattern is also conserved at the midline of the amphipod P. hawaiensis, which undergoes split germ-band development. Conserved Net accumulation patterns indicate that arthropod midline cells are homologous, and that Nets function to regulate commissure formation during CNS development of Tetraconata.


Assuntos
Anticorpos/imunologia , Artrópodes/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Artrópodes/anatomia & histologia , Artrópodes/citologia , Reações Cruzadas , Imuno-Histoquímica , Netrina-1
2.
Evol Dev ; 9(2): 131-40, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17371396

RESUMO

Although many similarities in arthropod central nervous systems (CNS) development exist, differences in midline cell formation and ventral nerve cord axonogenesis have been noted in arthropods. It is possible that changes in the expression of axon guidance molecules such as Netrin, which functions during commissural axon guidance in Drosophila and many other organisms, may parallel these differences. In this investigation, we analyze this hypothesis by examining Netrin accumulation during development of the brine shrimp Artemia franciscana, a branchiopod crustacean. An Artemia franciscana netrin (afrnet) orthologue was cloned. An antibody to the afrNet protein was generated and used to examine the pattern of afrNet accumulation during Artemia development. Despite differences between Drosophila and Artemia nerve cord development, examination of afrNet accumulation suggests that this protein functions to regulate commissure formation during Artemia CNS development. However, detection of afrNet at the midline and on commissural axons occurs at a relatively later time point in Artemia as compared with Drosophila. Detection of afrNet in a subset of midline cells that closely resemble Netrin-expressing cells at the Drosophila midline provides evidence for homology of midline cells in arthropods. Expression of Netrins in many other tissues is comparable, suggesting that Netrin proteins may play many conserved roles during arthropod development.


Assuntos
Artemia/embriologia , Axônios/fisiologia , Fatores de Crescimento Neural/genética , Sequência de Aminoácidos , Animais , Artemia/genética , Dados de Sequência Molecular , Fatores de Crescimento Neural/biossíntese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa