Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 95(4): 436-442, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30557074

RESUMO

PURPOSE: The purpose of this study was to translate our in vitro therapy approach to an in vivo model. Increased glutamine uptake is known to drive cancer cell proliferation, making tumor cells glutamine-dependent. Studying lymph-node aspirates containing malignant lung tumor cells showed a strong correlation between glutamine consumption and glutathione (GSH) excretion. Subsequent experiments with A549 and H460 lung tumor cell lines provided additional evidence for glutamine's role in driving synthesis and excretion of GSH. Using stable-isotope-labeled glutamine as a tracer metabolite, we demonstrated that the glutamate group in GSH is directly derived from glutamine, linking glutamine utilization intimately to GSH syntheses. MATERIALS AND METHODS: To understand the possible mechanistic link between glutamine consumption and GSH excretion, we studied GSH metabolism in more detail. Inhibition of glutaminase (GLS) with BPTES, a GLS-specific inhibitor, effectively abolished GSH synthesis and excretion. Since our previous work, several novel GLS inhibitors became available and we report herein effects of CB-839 in A427, H460 and A549 lung tumor cells and human lungtumor xenografts in mice. RESULTS: Inhibition of GLS markedly reduced cell viability, producing ED50 values for inhibition of colony formation of 9, 27 and 217 nM in A427, A549 and H460, respectively. Inhibition of GLS is accompanied by ∼30% increased response to radiation, suggesting an important role of glutamine-derived GSH in protecting tumor cells against radiation-induced injury. In subsequent mouse xenografts, short-term CB-839 treatments reduced serum GSH by >50% and increased response to radiotherapy of H460-derived tumor xenografts by 30%. CONCLUSION: The results support the proposed mechanistic link between GLS activity and GSH synthesis and suggest that GLS inhibitors are effective radiosensitizers.


Assuntos
Benzenoacetamidas/farmacologia , Glutaminase/antagonistas & inibidores , Neoplasias Pulmonares/radioterapia , Tolerância a Radiação/efeitos dos fármacos , Tiadiazóis/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Glutamina/metabolismo , Glutationa/metabolismo , Humanos , Masculino , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Am Assoc Lab Anim Sci ; 50(4): 500-6, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21838979

RESUMO

Babesia spp. are tick-transmitted apicomplexan hemoparasites that infect mammalian red blood cells. Our purpose was to determine the prevalence of Babesia infection in a colony of captive baboons and to evaluate potential experimental routes of the transmission of the hemoparasite. DNA was extracted from the blood of baboons and tested for infection with Babesia by PCR and primers that amplify the 18s rRNA gene of the parasite. The overall prevalence of infection of Babesia in the baboon population was 8.8% (73 of 830). Phylogenetic analysis of the sequenced DNA from 2 baboons revealed that the Babesia isolate found in captive baboons was a novel species most closely related (97% to 99%) to B. leo. Blood from a Babesia-infected donor baboon was inoculated intravenously, intramuscularly, or subcutaneously into 3 naive baboons. The intravenously inoculated baboon was PCR-positive at 7 d after inoculation; the 2 baboons inoculated by other routes became PCR-positive at 10 d after inoculation. All 3 baboons remained PCR-positive for Babesia through day 31. Baboons experimentally inoculated with the new Babesia isolate did not exhibit clinical signs of babesiosis during the experiments. We demonstrated that captive baboons are infected with a novel Babesia isolate. In addition we showed that Babesia can be transmitted in the absence of the organism's definitive host (ticks) by transfer of infected blood through intravenous, intramuscular, and subcutaneous routes to naive baboons.


Assuntos
Animais de Laboratório/parasitologia , Babesia/genética , Babesiose/veterinária , Doenças dos Macacos/epidemiologia , Doenças dos Macacos/parasitologia , Doenças dos Macacos/transmissão , Papio cynocephalus , Animais , Animais de Laboratório/sangue , Babesiose/epidemiologia , Babesiose/transmissão , Sequência de Bases , Teorema de Bayes , Análise por Conglomerados , Primers do DNA/genética , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/veterinária , RNA Ribossômico 18S/genética , Análise de Sequência de DNA/veterinária , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa