Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anim Genet ; 55(1): 55-65, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38112158

RESUMO

This study aimed to build gene-biological process networks with differentially expressed genes associated with economically important traits of Nelore cattle from 17 previous studies. The genes were clustered into three groups by evaluated traits: group 1, production traits; group 2, carcass traits; and group 3, meat quality traits. For each group, a gene-biological process network analysis was performed with the differentially expressed genes in common. For production traits, 37 genes were found in common, of which 13 genes were enriched for six Gene Ontology (GO) terms; these terms were not functionally grouped. However, the enriched GO terms were related to homeostasis, the development of muscles and the immune system. For carcass traits, four genes were found in common. Thus, it was not possible to functionally group these genes into a network. For meat quality traits, the analysis revealed 222 genes in common. CSRP3 was the only gene differentially expressed in all three groups. Non-redundant biological terms for clusters of genes were functionally grouped networks, reflecting the cross-talk between all biological processes and genes involved. Many biological processes and pathways related to muscles, the immune system and lipid metabolism were enriched, such as striated muscle cell development and triglyceride metabolic processes. This study provides insights into the genetic mechanisms of production, carcass and meat quality traits of Nelore cattle. This information is fundamental for a better understanding of the complex traits and could help in planning strategies for the production and selection systems of Nelore cattle.


Assuntos
Redes Reguladoras de Genes , Carne , Bovinos/genética , Animais , Fenótipo , Expressão Gênica , Carne/análise
2.
Anim Genet ; 53(5): 570-582, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35811456

RESUMO

This study aimed to integrate analyses of structural variations and differentially expressed genes (DEGs) associated with the beef fatty acid (FA) profile in Nellore cattle. Copy numbers variation (CNV) detection was performed using the penncnv algorithm and CNVRuler software in 3794 genotyped animals through the High-Density Bovine BeadChip. In order to perform the genomic wide association study (GWAS), a total of 963 genotyped animals were selected to obtain the intramuscular lipid concentration and quantify the beef FA profile. A total of 48 animals belonging to the same farm and management lot were extracted from the 963 genotyped and phenotyped animals to carry out the transcriptomic and differentially expressed gene analyses. The GWAS with extreme groups of FA profiles was performed using a logistic model. A total of 43, 42, 66 and 35 significant CNV regions (p < 0.05) for saturated, monounsaturated, polyunsaturated and omega 3 and 6 fatty acids were identified respectively. The paired-end sequencing of 48 samples was performed using the Illumina HiSeq2500 platform. Real-time quantitative PCR was used to validate the DEGs identified by RNA-seq analysis. The results showed several DEGs associated with the FA profile of Longissimus thoracis, such as BSCL2 and SAMD8. Enriched terms as the cellular response to corticosteroid (GO:0071384) and glucocorticoid stimulus (GO:0071385) could be highlighted. The identification of structural variations harboring candidate genes for beef FA must contribute to the elucidation of the genetic basis that determines the beef FA composition of intramuscular fat in Nellore cattle. Our results will contribute to the identification of potential biomarkers for complex phenotypes, such as the FA profile, to improve the reliability of the genomic predictions including pre-selected variants using differentiated weighting in the genomic models.


Assuntos
Ácidos Graxos , Animais , Bovinos/genética , Ácidos Graxos/análise , Expressão Gênica , Genótipo , Fenótipo , Reprodutibilidade dos Testes
3.
Evol Appl ; 15(4): 706-718, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35505883

RESUMO

The aim of this study was to identify novel lncRNA differentially expressed (DE) between divergent animals for beef tenderness and marbling traits in Nellore cattle. Longissimus thoracis muscle samples from the 20 most extreme bulls (of 80 bulls set) for tenderness, tender (n = 10) and tough (n = 10) groups, and marbling trait, high (n = 10) and low (n = 10) groups were used to perform transcriptomic analysis using RNA-Sequencing. For tenderness, 29 lncRNA were DE (p-value ≤ 0.01) in tough beef animals in relation to tender beef animals. We observed that genic lncRNAs, for example, lncRNA_595.1, were overlapping exonic part of the PICK gene, while lncRNA_3097.2 and lncRNA_3129.5 overlapped intronic part of the genes GADL1 and PSMD6. The lncRNA associated with PICK1, GADL1, and PMD6 genes were enriched in the pathways associated with the ionotropic glutamate receptor, gamma-aminobutyric acid synthesis, and the ubiquitin-proteasome pathway. For marbling, 50 lncRNA were DE (p-value ≤ 0.01) in high marbling group compared with low marbling animals. The genic lncRNAs, such as lncRNA_3191.1, were overlapped exonic part of the ITGAL gene, and the lncRNA_512.1, lncRNA_3721.1, and lncRNA_41.4 overlapped intronic parts of the KRAS and MASP1 genes. The KRAS and ITGAL genes were enriched in pathways associated with integrin signaling, which is involved in intracellular signals in response to the extracellular matrix, including cell form, mobility, and mediates progression through the cell cycle. In addition, the lincRNAs identified to marbling trait were associated with several genes related to calcium binding, muscle hypertrophy, skeletal muscle, lipase, and oxidative stress response pathways that seem to play a role important in the physiological processes related to meat quality. These findings bring new insights to better understand the biology mechanisms involved in the gene regulation of these traits, which will be valuable for a further investigation of the interactions between lncRNA and mRNAs, and of how these interactions may affect meat quality traits.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa