Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
FASEB J ; 35(1): e21133, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184917

RESUMO

Chronic vascular inflammation plays a key role in the pathogenesis of atherosclerosis. Long non-coding RNAs (lncRNAs) have emerged as essential inflammation regulators. We identify a novel lncRNA termed lncRNA-MAP3K4 that is enriched in the vessel wall and regulates vascular inflammation. In the aortic intima, lncRNA-MAP3K4 expression was reduced by 50% during the progression of atherosclerosis (chronic inflammation) and 70% during endotoxemia (acute inflammation). lncRNA-MAP3K4 knockdown reduced the expression of key inflammatory factors (eg, ICAM-1, E-selectin, MCP-1) in endothelial cells or vascular smooth muscle cells and decreased monocytes adhesion to endothelium, as well as reducing TNF-α, IL-1ß, COX2 expression in macrophages. Mechanistically, lncRNA-MAP3K4 regulates inflammation through the p38 MAPK signaling pathway. lncRNA-MAP3K4 shares a bidirectional promoter with MAP3K4, an upstream regulator of the MAPK signaling pathway, and regulates its transcription in cis. lncRNA-MAP3K4 and MAP3K4 show coordinated expression in response to inflammation in vivo and in vitro. Similar to lncRNA-MAP3K4, MAP3K4 knockdown reduced the expression of inflammatory factors in several different vascular cells. Furthermore, lncRNA-MAP3K4 and MAP3K4 knockdown showed cooperativity in reducing inflammation in endothelial cells. Collectively, these findings unveil the role of a novel lncRNA in vascular inflammation by cis-regulating MAP3K4 via a p38 MAPK pathway.


Assuntos
Regulação da Expressão Gênica , MAP Quinase Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases , RNA Longo não Codificante/metabolismo , Vasculite/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , MAP Quinase Quinase Quinase 4/genética , Camundongos , RNA Longo não Codificante/genética , Vasculite/genética , Vasculite/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
2.
Arterioscler Thromb Vasc Biol ; 41(9): 2399-2416, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34289702

RESUMO

Objective: Vascular smooth muscle cell (VSMC) plasticity plays a critical role in the development of atherosclerosis. Long noncoding RNAs (lncRNAs) are emerging as important regulators in the vessel wall and impact cellular function through diverse interactors. However, the role of lncRNAs in regulating VSMCs plasticity and atherosclerosis remains unclear. Approach and Results: We identified a VSMC-enriched lncRNA cardiac mesoderm enhancer-associated noncoding RNA (CARMN) that is dynamically regulated with progression of atherosclerosis. In both mouse and human atherosclerotic plaques, CARMN colocalized with VSMCs and was expressed in the nucleus. Knockdown of CARMN using antisense oligonucleotides in Ldlr−/− mice significantly reduced atherosclerotic lesion formation by 38% and suppressed VSMCs proliferation by 45% without affecting apoptosis. In vitro CARMN gain- and loss-of-function studies verified effects on VSMC proliferation, migration, and differentiation. TGF-ß1 (transforming growth factor-beta) induced CARMN expression in a Smad2/3-dependent manner. CARMN regulated VSMC plasticity independent of the miR143/145 cluster, which is located in close proximity to the CARMN locus. Mechanistically, lncRNA pulldown in combination with mass spectrometry analysis showed that the nuclear-localized CARMN interacted with SRF (serum response factor) through a specific 600­1197 nucleotide domain. CARMN enhanced SRF occupancy on the promoter regions of its downstream VSMC targets. Finally, knockdown of SRF abolished the regulatory role of CARMN in VSMC plasticity. Conclusions: The lncRNA CARMN is a critical regulator of VSMC plasticity and atherosclerosis. These findings highlight the role of a lncRNA in SRF-dependent signaling and provide implications for a range of chronic vascular occlusive disease states.


Assuntos
Aterosclerose/metabolismo , Plasticidade Celular , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Resposta Sérica/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Linhagem Celular , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , Placa Aterosclerótica , RNA Longo não Codificante/genética , Receptores de LDL/deficiência , Receptores de LDL/genética , Fator de Resposta Sérica/genética , Transdução de Sinais
3.
Adv Exp Med Biol ; 1363: 161-175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35220570

RESUMO

Long noncoding RNAs (lncRNAs) have emerged as critical regulators of cellular functions including maintenance of cellular homeostasis as well as the onset and progression of disease. LncRNAs often exhibit cell-, tissue-, and disease-specific expression patterns, making them desirable therapeutic targets. LncRNAs are commonly targeted using oligonucleotide therapeutics, and advances in oligonucleotide chemistry including C2 ribose sugar modifications such as 2'-fluoro, 2'-O-methyl, and 2-O-methoxyethyl modifications; 2'4'-constrained nucleotides such as locked nucleic acids and constrained 2'-O-ethyl (cEt) nucleotides; and phosphorothioate bonds have dramatically improved efficacy of oligonucleotide therapies. Novel delivery platforms such as viral vectors and nanoparticles have also improved pharmacokinetic properties of oligonucleotides targeting lncRNAs. Accumulating pre-clinical studies have utilized these strategies to therapeutically target lncRNAs and alter progression of many different disease states including Snhg12 and Chast in cardiovascular disease, Mirt2 and HOTTIP in sepsis and autoimmune disease, and Malat1 and HOXB-AS3 in cancer. Emerging oligonucleotide conjugation methods including the use of peptide nucleic acids hold promise to facilitate targeting to specific tissue types. Here, we review recent advances in lncRNA therapeutics and provide examples of how lncRNAs have been successfully targeted in pre-clinical models of disease. Finally, we detail remaining challenges facing the lncRNA field and how advances in delivery platforms and oligonucleotide chemistry might help overcome these barriers to catalyze the translation of pre-clinical studies to successful pharmaceutical development.


Assuntos
Doenças Cardiovasculares , Neoplasias , RNA Longo não Codificante , Doenças Cardiovasculares/tratamento farmacológico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/uso terapêutico
4.
RNA Biol ; 18(sup1): 198-214, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34570661

RESUMO

A major unresolved challenge in miRNA biology is the capacity to monitor the spatiotemporal activity of miRNAs expressed in animal disease models. We recently reported that the miRNA-ON monitoring system called RILES (RNAi-inducible expression Luciferase system) implanted in lentivirus expression system (LentiRILES) offers unique opportunity to decipher the kinetics of miRNA activity in vitro, in relation with their intracellular trafficking in glioblastoma cells. In this study, we describe in detail the method for the production of LentiRILES stable cell lines and employed it in several applications in the field of miRNA biology and therapy. We show that LentiRILES is a robust, highly specific and sensitive miRNA sensor system that can be used in vitro as a single-cell miRNA monitoring method, cell-based screening platform for miRNA therapeutics and as a tool to analyse the structure-function relationship of the miRNA duplex. Furthermore, we report the kinetics of miRNA activity upon the intracranial delivery of miRNA mimics in an orthotopic animal model of glioblastoma. This information is exploited to evaluate the tumour suppressive function of miRNA-200c as locoregional therapeutic modality to treat glioblastoma. Our data provide evidence that LentiRILES is a robust system, well suited to resolve the activity of endogenous and exogenously expressed miRNAs from basic research to gene and cell therapy.


Assuntos
Biomarcadores Tumorais/genética , Técnicas Biossensoriais/métodos , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Glioblastoma/patologia , Lentivirus/genética , MicroRNAs/análise , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Medições Luminescentes , Masculino , Camundongos , Camundongos SCID , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Células Tumorais Cultivadas
5.
Curr Opin Cardiol ; 32(6): 776-783, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28786864

RESUMO

PURPOSE OF REVIEW: Long noncoding RNAs (lncRNAs) have emerged as powerful regulators of nearly all biological processes. Their cell-type and tissue-specific expression in health and disease provides new avenues for diagnosis and therapy. This review highlights the role of lncRNAs that are involved in cardiovascular disease (CVD) with a special focus on cell types involved in cardiac injury and remodeling, vascular injury, angiogenesis, inflammation, and lipid metabolism. RECENT FINDINGS: Almost 98% of the genome does not encode for proteins. LncRNAs are among the most abundant type of RNA in the noncoding genome. Accumulating studies have uncovered novel lncRNA-mediated regulation of CVD-associated genes, signaling pathways, and pathophysiological responses. Targeting lncRNAs in vivo using short antisense oligonucleotides or by gene editing has provided important insights into disease pathogenesis through epigenetic, transcriptional, or translational mechanisms. Although cross-species conservation still remains a major obstacle, there is increasing appreciation that altered expression of lncRNAs associates with stage-specific CVD and in human patient cohorts, providing new opportunities for diagnosis and therapy. SUMMARY: A better understanding of lncRNAs will not only fundamentally improve our understanding of key signaling pathways in CVD, but also aid in the development of effective new therapies and RNA-based biomarkers.


Assuntos
Doenças Cardiovasculares/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Células Endoteliais/metabolismo , Humanos , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Monócitos/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/metabolismo
6.
Mediators Inflamm ; 2016: 1625149, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27703301

RESUMO

Inflammation is a common process associated with numerous vascular pathologies. We hypothesized that targeting the inflamed endothelium by coupling a peptide with high affinity for P-selectin to the surface of dexamethasone-loaded lipid nanoemulsions will highly increase their specific binding to activated endothelial cells (EC) and reduce the cell activation. We developed and characterized dexamethasone-loaded lipid nanoemulsions directed towards P-selectin (PLN-Dex) and monitored their anti-inflammatory effects in vitro using cultured EC (EA.hy926 cells) and in vivo using a mouse model of acute inflammation [lipopolysaccharides (LPS) intravenously administered in C57BL/6 mice]. We found that PLN-Dex bound specifically to the surface of activated EC are efficiently internalized by EC and reduced the expression of proinflammatory genes, thus preventing the monocyte adhesion and transmigration to/through activated EC. Given intravenously in mice with acute inflammation, PLN-Dex accumulated at a significant high level in the lungs (compared to nontargeted nanoemulsions) and significantly reduced mRNA expression level of key proinflammatory cytokines such as IL-1ß, IL-6, and MCP-1. In conclusion, the newly developed nanoformulation, PLN-Dex, is functional in vitro and in vivo, reducing selectively the endothelium activation and the consequent monocyte infiltration and diminishing significantly the lungs' inflammation, in a mouse model of acute inflammation.


Assuntos
Dexametasona/química , Emulsões/química , Inflamação/tratamento farmacológico , Nanoestruturas/química , Selectina-P/uso terapêutico , Animais , Quimiocina CCL2/metabolismo , Emulsões/administração & dosagem , Citometria de Fluxo , Inflamação/induzido quimicamente , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas/administração & dosagem , Selectina-P/química
7.
J Cell Biochem ; 114(10): 2273-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23606279

RESUMO

During the early phase of atherosclerosis, monocytes attach to and migrate through the vessel wall where they activate and communicate with smooth muscle cells (SMC) affecting plaque progression by largely unknown mechanisms. Activation of STAT3 transcription factor is suggested to be critically involved in dedifferentiation, migration, and proliferation of SMC in the neointima formation after vascular injury. Monocytes-SMC cross-talk induces an inflammatory phenotype of the resident SMC, but the involvement of STAT3 in phenotype switching is not known. Resistin is a cytokine found in human atheroma associated to monocytes/macrophages with role in inflammation associated with cardiovascular disease. The aim of this study was to follow the effect of activated monocytes-SMC cross-talk on STAT3 activation and subsequent resistin and reactive oxygen species (ROS) production. Our results showed that the interaction of activated monocytes with SMC determines: (i) phosphorylation of STAT3 and reduction of SOCS3 expression in both cell types; (ii) intracellular ROS production dependent on NADPH oxidase (by increased Nox1 expression) and STAT3 activation in SMC; (iii) up-regulation of resistin expression in monocytes dependent on STAT3 activation. Furthermore, exposure of SMC to resistin induces ROS by increasing NADPH oxidase activity and the p22phox and Nox1 expression. In conclusion, the cross-talk between SMC and monocytes activates STAT3 transcription factor and lead to resistin up-regulation in monocytes and ROS production in SMC. Moreover, resistin increases the ROS levels in SMC. These data indicate that monocyte-SMC communication may represent an important factor for progression of the atherosclerotic lesion.


Assuntos
Monócitos/citologia , Monócitos/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resistina/metabolismo , Fator de Transcrição STAT3/metabolismo , Western Blotting , Separação Celular , Células Cultivadas , Humanos , Reação em Cadeia da Polimerase em Tempo Real
8.
Cell Tissue Res ; 351(1): 161-74, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23086480

RESUMO

In the atherosclerotic plaque, smooth muscle cells (SMC) acquire an inflammatory phenotype. Resistin and fractalkine (CX3CL1) are found in human atheroma and not in normal arteries. CX3CL1 and CX3CR1 are predominately associated with SMC. We have questioned whether resistin has a role in the expression of CX3CL1 and CX3CR1 in SMC thus contributing to the pro-inflammatory status of these cells. Cultured human aortic SMC were stimulated with 100 ng/ml resistin for 4, 6, 12, and 24 h, and then CX3CL1 and CX3CR1 expression was assessed by quantitative reverse transcription with the polymerase chain reaction and Western blot. We found that resistin up-regulated CX3CL1 and CX3CR1 in SMC and induced the phosphorylation of p38MAPK and STAT3. Inhibitors of p38MAPK, JAK-STAT, NF-kB, and AP-1 significantly reduced CX3CL1 and CX3CR1 expression. Knockdown of STAT1 and STAT3 with decoy oligodeoxinucleotides and the silencing of p65 and cjun with short interfering RNA decreased CX3CL1 and CX3CR1 expression. Anti-TLR4 antibody and pertussis toxin also reduced CX3CL1 and CX3CR1 protein expression. xCELLigence experiments revealed that resistin probably uses Gi-proteins for its effect on SMC. The CX3CL1 induced by resistin exhibited a chemotactic effect on monocyte transmigration. Thus, (1) resistin contributes to the pro-inflammatory state of SMC by the up-regulation of CX3CL1 and CX3CR1 expression via a mechanism involving NF-kB, AP-1, and STAT1/3 transcription factors, (2) resistin employs TLR4 and Gi-protein signaling for its effect on SMC, (3) CX3CL1 induced by resistin is functional in monocyte chemotaxis. The data reveal new mechanisms by which resistin promotes the inflammatory phenotype of SMC.


Assuntos
Quimiocina CX3CL1/genética , Inflamação/patologia , Miócitos de Músculo Liso/patologia , Receptores de Quimiocinas/genética , Resistina/farmacologia , Receptor 4 Toll-Like/metabolismo , Regulação para Cima/efeitos dos fármacos , Sítios de Ligação , Receptor 1 de Quimiocina CX3C , Linhagem Celular , Quimiocina CX3CL1/metabolismo , Quimiotaxia/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Inativação Gênica/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Quimiocinas/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Biochem Biophys Res Commun ; 422(2): 321-6, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22575502

RESUMO

Resistin is a significant local and systemic regulatory cytokine involved in inflammation. Suppressors of cytokine signaling (SOCS) proteins are intracellular regulators of receptor signal transduction induced by several cytokines in a cytokine and cell specific manner. Resistin up-regulates SOCS3 expression in mice adipocytes but it is not known whether this is a common occurrence in other cells. We questioned whether resistin-induces SOCS3 in human endothelial cells and if signal transducer and activator of transcription (STAT) proteins are involved in the process. The Real-Time PCR and Western blot analysis showed that in resistin-activated HEC the gene and protein expression of SOCS3 were significantly increased. Furthermore, resistin induced activation of STAT3 as characterized by increased tyrosine phosphorylation. Resistin-induced SOCS3 expression was blocked by specific inhibitors of STAT3 signaling and by the transfection of siRNA specific for STAT3. Silencing of SOCS3 gene expression by transfection with SOCS3 siRNA reduced the expression of resistin induced-P-selectin and fractalkine in HEC. Together, our results demonstrate that in HEC (1) resistin up-regulates SOCS3 expression and activates STAT3 transcription factor; (2) the increase in SOCS3 mRNA and protein expression as well as STAT3 activation have a long-lasting effect (up to 18h); (3) inhibition of SOCS3 function prevents resistin-induced expression of cell adhesion molecules P-selectin and fractalkine and thus activation of endothelial cells. The data uncover a new resistin-mediated mechanism in human endothelial cells and designate SOCS3 as a novel therapeutic target to modulate resistin-dependent inflammation in vessel wall diseases.


Assuntos
Células Endoteliais/metabolismo , Inflamação/genética , Resistina/fisiologia , Fator de Transcrição STAT3/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Ativação Transcricional , Células Endoteliais/efeitos dos fármacos , Humanos , Resistina/farmacologia , Fator de Transcrição STAT3/agonistas , Proteína 3 Supressora da Sinalização de Citocinas , Regulação para Cima
10.
Cell Tissue Res ; 343(2): 379-87, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21153665

RESUMO

Resistin has emerged as a significant local and systemic regulatory cytokine involved in inflammation. In diabetic patients, the serum resistin level is increased, monocytes/macrophages being an important source of resistin production. We therefore hypothesize that high glucose concentrations (HG) regulate resistin expression in human monocytes. Our aim has been to uncover the potential signalling pathways involved in this process. We have also questioned whether insulin has an effect on the regulation of resistin expression induced by HG. Human monocytes (U937 cell line) were exposed to 25 mM glucose for 24 h and then resistin gene expression and protein levels were determined by reverse transcription with the polymerase chain reaction and Western blot assays. We found that (1) the gene expression and protein level of resistin were up-regulated by HG; (2) the inhibitors of the mitogen-activated protein kinases (MAPKs) p38 (SB203580), extracellular signal-regulated kinases 1/2 (ERK1/2; PD98059) and c-Jun N-terminal kinase (SP600125) and of the transcription factor nuclear factor kappa-B (PDTC) inhibited HG-induced resistin protein production and (3) insulin reduced HG-induced resistin expression via a mechanism independent of phosphatidylinositol 3-kinase (PI3K) or p38 and ERK1/2. Therefore, HG significantly increases resistin gene expression and protein production in the U937 cell line by mechanisms involving MAPKs and the transcription factor NF-kB, whereas insulin reduces its expression. This study adds new data concerning the molecular mechanisms involved in the pro-inflammatory effects of HG on human monocytes.


Assuntos
Glucose/farmacologia , Insulina/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo , Resistina/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Flavonoides/farmacologia , Humanos , Imidazóis/farmacologia , Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Piridinas/farmacologia , Resistina/genética , Células U937 , Regulação para Cima
11.
Phytother Res ; 25(12): 1737-42, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21442673

RESUMO

Resistin is a cytokine which plays an important role in cardiovascular disease by influencing systemic inflammation and endothelial activation. In human endothelial cells (HEC) it increases the expression of P-selectin and fractalkine, and enhances monocyte adhesion by antioxidant mechanisms. This study investigated whether the natural antioxidants curcumin (CC) and an extract of Morus alba leaves (MA) have protective effects in resistin-activated HEC. HEC were exposed to 100 ng/mL resistin for 6 and 18 h in the absence or presence of MA or CC and the expression of fractalkine and P-selectin was determined by RT-PCR and western blot. Intracellular accumulation of reactive oxygen species (ROS) was monitored by fluorimetry and NADPH oxidase activity by a lucigenin-enhanced chemiluminescence assay. In addition, adhesion assays using the monocytic U937 cells were performed. The results showed that treatment of HEC exposed to resistin with MA and CC: (1) inhibited significantly P-selectin and fractalkine expression, (2) inhibited the increase in the intracellular ROS level, (3) reduced NADPH activation and (4) reduced monocytes adhesion to HEC. The results indicate that MA and curcumin target resistin-induced human endothelial activation partly via antioxidant mechanisms and suggest that they may represent therapeutic agents in vascular disease mediated by resistin.


Assuntos
Curcumina/química , Células Endoteliais/efeitos dos fármacos , Morus/química , Extratos Vegetais/farmacologia , Resistina/farmacologia , Antioxidantes/farmacologia , Adesão Celular , Linhagem Celular , Quimiocina CX3CL1/metabolismo , Células Endoteliais/metabolismo , Humanos , NADPH Oxidases/metabolismo , Selectina-P/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Biochem Biophys Res Commun ; 391(3): 1443-8, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20034466

RESUMO

Resistin and high glucose (HG) are concomitantly present at elevated concentration in diabetic's plasma; both are pro-inflammatory agents acting on vascular cells by mechanisms that are not fully understood. We questioned whether resistin and HG affect the expression of major adhesion molecules, P-selectin and fractalkine in human endothelial cells (HEC). The results showed that in HEC (i) resistin increased P-selectin expression; (ii) HG up-regulated Fk expression; (iii) P-selectin and fractalkine were functional increasing monocyte adhesion to activated cells. Co-stimulation with resistin and HG increased P-selectin and fractalkine mRNA and protein and induced monocyte adhesion, generated an increase in NADPH oxidase activity and of the intracellular reactive oxygen species and activated the NF-kB and AP-1 transcription factors at similar values as those of each activator. In conclusion in HEC, resistin and HG induce the up-regulation of P-selectin and fractalkine and the ensuing increased monocyte adhesion by a mechanism involving oxidative stress and NF-kB and AP-1 activation.


Assuntos
Quimiocina CX3CL1/biossíntese , Células Endoteliais/fisiologia , Hiperglicemia/metabolismo , Monócitos/fisiologia , Selectina-P/biossíntese , Resistina/metabolismo , Glicemia/metabolismo , Adesão Celular , Linhagem Celular , Quimiocina CX3CL1/genética , Diabetes Mellitus/sangue , Diabetes Mellitus/metabolismo , Regulação da Expressão Gênica , Glucose/farmacologia , Humanos , Monócitos/efeitos dos fármacos , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Selectina-P/genética , Espécies Reativas de Oxigênio , Resistina/farmacologia , Fator de Transcrição AP-1/metabolismo , Regulação para Cima
13.
Genes (Basel) ; 11(11)2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207533

RESUMO

Rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19), has led to a global pandemic, failures of local health care systems, and global economic recession. MicroRNAs (miRNAs) have recently emerged as important regulators of viral pathogenesis, particularly among RNA viruses, but the impact of host miRNAs on SARS-CoV-2 infectivity remains unknown. In this study, we utilize the combination of powerful bioinformatic prediction algorithms and miRNA profiling to predict endogenous host miRNAs that may play important roles in regulating SARS-CoV-2 infectivity. We provide a collection of high-probability miRNA binding sites within the SARS-CoV-2 genome as well as within mRNA transcripts of critical viral entry proteins ACE2 and TMPRSS2 and their upstream modulators, the interferons (IFN). By utilizing miRNA profiling datasets of SARS-CoV-2-resistant and -susceptible cell lines, we verify the biological plausibility of the predicted miRNA-target RNA interactions. Finally, we utilize miRNA profiling of SARS-CoV-2-infected cells to identify predicted miRNAs that are differentially regulated in infected cells. In particular, we identify predicted miRNA binders to SARS-CoV-2 ORFs (miR-23a (1ab), miR-29a, -29c (1ab, N), miR-151a, -151b (S), miR-4707-3p (S), miR-298 (5'-UTR), miR-7851-3p (5'-UTR), miR-8075 (5'-UTR)), ACE2 3'-UTR (miR-9-5p, miR-218-5p), TMPRSS2 3'-UTR (let-7d-5p, -7e-5p, miR-494-3p, miR-382-3p, miR-181c-5p), and IFN-α 3'-UTR (miR-361-5p, miR-410-3p). Overall, this study provides insight into potential novel regulatory mechanisms of SARS-CoV-2 by host miRNAs and lays the foundation for future investigation of these miRNAs as potential therapeutic targets or biomarkers.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Genoma Viral , Interferons/genética , MicroRNAs/genética , RNA Mensageiro/genética , SARS-CoV-2/genética , Serina Endopeptidases/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Biologia Computacional/métodos , Inativação Gênica , Humanos , Interferons/metabolismo , MicroRNAs/química , MicroRNAs/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Serina Endopeptidases/metabolismo , Transcriptoma , Proteínas Virais/genética
14.
J Control Release ; 327: 429-443, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32853728

RESUMO

MicroRNA (miRNA) oligonucleotides therapeutics are potent and attractive drugs for cancer treatment, but the kinetics of their intracellular trafficking, RISC processing and interaction with their mRNA targets in the cells are still not well understood. Moreover, the absence of efficient carriers impairs their translation into the clinic. Here, we compare the kinetics of miRNA-133a activity after transfection of U87MG glioblastoma cells with either a home-made lipopolyplexes (LPRi) or with the RNAiMax transfection reagent. For this purpose, we combined miRNA intracellular trafficking studies by confocal microscopy with our previously described RILES miRNA-ON reporter system subcloned here in a lentivirus expression vector (LentiRILES) for longitudinal analysis of miRNA activity in transfected cells. Using the LentiRILES system, we report significant differences in terms of miRNA delivery kinetics performed by these two transfection regents. We decipher the mechanisms of miRNA delivery by LPRi and investigate the main steps of miRNA internalization and cytosolic processing. We demonstrate that LPRi preferentially uses caveolae-mediated endocytosis as the main internalization pathway, releases miRNA into the cytosol after the first 3 h of incubation, and addresses the cytosolic miRNAs to P-bodies, while a fraction of miRNAs are exported to the extracellular space through exosomes which were found fully capable to re-transfect the cells. We implanted the LentiRILES cells in the brain of mice and infused the tumours with LPRi.miRNA using the convection-enhanced delivery method. Bioluminescence imaging of the live mice revealed efficient delivery of miRNAs in glioblastoma tumours, attesting successful miRNA uptake, internalization and RISC activation in vivo. Overall, our study provides a comprehensive overview of miRNA intracellular trafficking and processing in a glioblastoma context and highlights the potential use of LPRi for miRNA-based therapy.


Assuntos
Exossomos , Glioblastoma , MicroRNAs , Animais , Endocitose , Glioblastoma/genética , Glioblastoma/terapia , Camundongos , MicroRNAs/genética , Transfecção
15.
JCI Insight ; 5(21)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33021969

RESUMO

Long noncoding RNAs (lncRNAs) play important roles in regulating diverse cellular processes in the vessel wall, including atherosclerosis. RNA-Seq profiling of intimal lesions revealed a lncRNA, VINAS (Vascular INflammation and Atherosclerosis lncRNA Sequence), that is enriched in the aortic intima and regulates vascular inflammation. Aortic intimal expression of VINAS fell with atherosclerotic progression and rose with regression. VINAS knockdown reduced atherosclerotic lesion formation by 55% in LDL receptor-deficient (LDLR-/-) mice, independent of effects on circulating lipids, by decreasing inflammation in the vessel wall. Loss- and gain-of-function studies in vitro demonstrated that VINAS serves as a critical regulator of inflammation by modulating NF-κB and MAPK signaling pathways. VINAS knockdown decreased the expression of key inflammatory markers, such as MCP-1, TNF-α, IL-1ß, and COX-2, in endothelial cells (ECs), vascular smooth muscle cells, and bone marrow-derived macrophages. Moreover, VINAS silencing decreased expression of leukocyte adhesion molecules VCAM-1, E-selectin, and ICAM-1 and reduced monocyte adhesion to ECs. DEP domain containing 4 (DEPDC4), an evolutionary conserved human ortholog of VINAS with approximately 74% homology, showed similar regulation in human and pig atherosclerotic specimens. DEPDC4 knockdown replicated antiinflammatory effects of VINAS in human ECs. These findings reveal a potentially novel lncRNA that regulates vascular inflammation, with broad implications for vascular diseases.


Assuntos
Aterosclerose/patologia , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , Receptores de LDL/fisiologia , Animais , Aorta/metabolismo , Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/genética , NF-kappa B/genética , Transdução de Sinais , Suínos
16.
Nat Commun ; 11(1): 6135, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262333

RESUMO

Long non-coding RNAs (lncRNAs) are emerging regulators of pathophysiological processes including atherosclerosis. Using RNA-seq profiling of the intima of lesions, here we identify a macrophage-specific lncRNA MAARS (Macrophage-Associated Atherosclerosis lncRNA Sequence). Aortic intima expression of MAARS increases by 270-fold with atherosclerotic progression and decreases with regression by 60%. MAARS knockdown reduces atherosclerotic lesion formation by 52% in LDLR-/- mice, largely independent of effects on lipid profile and inflammation, but rather by decreasing macrophage apoptosis and increasing efferocytosis in the vessel wall. MAARS interacts with HuR/ELAVL1, an RNA-binding protein and important regulator of apoptosis. Overexpression and knockdown studies verified MAARS as a critical regulator of macrophage apoptosis and efferocytosis in vitro, in an HuR-dependent manner. Mechanistically, MAARS knockdown alters HuR cytosolic shuttling, regulating HuR targets such as p53, p27, Caspase-9, and BCL2. These findings establish a mechanism by which a macrophage-specific lncRNA interacting with HuR regulates apoptosis, with implications for a broad range of vascular disease states.


Assuntos
Aterosclerose/metabolismo , Núcleo Celular/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Apoptose , Aterosclerose/genética , Aterosclerose/fisiopatologia , Núcleo Celular/genética , Proteína Semelhante a ELAV 1/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico , RNA Longo não Codificante/genética , Especificidade da Espécie
17.
Sci Transl Med ; 12(531)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075942

RESUMO

Long noncoding RNAs (lncRNAs) are emerging regulators of biological processes in the vessel wall; however, their role in atherosclerosis remains poorly defined. We used RNA sequencing to profile lncRNAs derived specifically from the aortic intima of Ldlr -/- mice on a high-cholesterol diet during lesion progression and regression phases. We found that the evolutionarily conserved lncRNA small nucleolar host gene-12 (SNHG12) is highly expressed in the vascular endothelium and decreases during lesion progression. SNHG12 knockdown accelerated atherosclerotic lesion formation by 2.4-fold in Ldlr -/- mice by increased DNA damage and senescence in the vascular endothelium, independent of effects on lipid profile or vessel wall inflammation. Conversely, intravenous delivery of SNHG12 protected the tunica intima from DNA damage and atherosclerosis. LncRNA pulldown in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that SNHG12 interacted with DNA-dependent protein kinase (DNA-PK), an important regulator of the DNA damage response. The absence of SNHG12 reduced the DNA-PK interaction with its binding partners Ku70 and Ku80, abrogating DNA damage repair. Moreover, the anti-DNA damage agent nicotinamide riboside (NR), a clinical-grade small-molecule activator of NAD+, fully rescued the increases in lesional DNA damage, senescence, and atherosclerosis mediated by SNHG12 knockdown. SNHG12 expression was also reduced in pig and human atherosclerotic specimens and correlated inversely with DNA damage and senescent markers. These findings reveal a role for this lncRNA in regulating DNA damage repair in the vessel wall and may have implications for chronic vascular disease states and aging.


Assuntos
Dano ao DNA , Proteína Quinase Ativada por DNA , Endotélio Vascular/patologia , RNA Longo não Codificante , Animais , Movimento Celular , Proliferação de Células , Cromatografia Líquida , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Proteínas Quinases , RNA Longo não Codificante/genética , Suínos , Espectrometria de Massas em Tandem
18.
Vascul Pharmacol ; 114: 145-156, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29425892

RESUMO

Accumulating studies indicate that long non-coding RNAs (lncRNAs) play important roles in the regulation of diverse biological processes involved in homeostatic control of the vessel wall in health and disease. However, our knowledge of the mechanisms by which lncRNAs control gene expression and cell signaling pathways is still nascent. Furthermore, only a handful of lncRNAs has been functionally evaluated in response to pathophysiological stimuli or in vascular disease states. For example, lncRNAs may regulate endothelial dysfunction by modulating endothelial cell proliferation (e.g. MALAT1, H19) or angiogenesis (e.g. MEG3, MANTIS). LncRNAs have also been implicated in modulating vascular smooth muscle cell (VSMC) phenotypes or vascular remodeling (e.g. ANRIL, SMILR, SENCR, MYOSLID). Finally, emerging studies have implicated lncRNAs in leukocytes activation (e.g. lincRNA-Cox2, linc00305, THRIL), macrophage polarization (e.g. GAS5), and cholesterol metabolism (e.g. LeXis). This review summarizes recent findings on the expression, mechanism, and function of lncRNAs implicated in a range of vascular disease states from mice to human subjects. An improved understanding of lncRNAs in vascular disease may provide new pathophysiological insights and opportunities for the generation of a new class of RNA-based biomarkers and therapeutic targets.


Assuntos
Vasos Sanguíneos/metabolismo , Doenças Cardiovasculares/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Vasos Sanguíneos/patologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação da Expressão Gênica , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , RNA Longo não Codificante/genética , Transdução de Sinais
19.
Pharmaceutics ; 11(1)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669699

RESUMO

: The progress in small-interfering RNA (siRNA) therapeutics depends on the development of suitable nanocarriers to perform specific and effective delivery to dysfunctional cells. In this paper, we questioned whether P-selectin, a cell adhesion molecule specifically expressed on the surface of activated endothelial cells (EC) could be employed as a target for nanotherapeutic intervention. To this purpose, we developed and characterized P-selectin targeted PEGylated cationic liposomes able to efficiently pack siRNA and to function as efficient vectors for siRNA delivery to tumour necrosis factor-α (TNF-α) activated EC. Targeted cationic liposomes were obtained by coupling a peptide with high affinity for P-selectin to a functionalized PEGylated phospholipid inserted in the liposomes' bilayer (Psel-lipo). As control, scrambled peptide coupled cationic liposomes (Scr-lipo) were used. The lipoplexes obtained by complexation of Psel-lipo with siRNA (Psel-lipo/siRNA) were taken up specifically and at a higher extent by TNF-α activated b.End3 endothelial cells as compared to non-targeted Scr-lipo/siRNA. The Psel-lipo/siRNA delivered with high efficiency siRNA into the cells. The lipoplexes were functional as demonstrated by the down-regulation of the selected gene (GAPDH). The results demonstrate an effective targeted delivery of siRNA into cultured activated endothelial cells using P-selectin directed PEGylated cationic liposomes, which subsequently knock-down the desired gene.

20.
Front Cardiovasc Med ; 5: 22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29662883

RESUMO

Less than 2% of the genome encodes for proteins. Accumulating studies have revealed a diverse set of RNAs derived from the non-coding genome. Among them, long non-coding RNAs (lncRNAs) have garnered widespread attention over recent years as emerging regulators of diverse biological processes including in cardiovascular disease (CVD). However, our knowledge of their mechanisms by which they control CVD-related gene expression and cell signaling pathways is still limited. Furthermore, only a handful of lncRNAs has been functionally evaluated in the context of vascular inflammation, an important process that underlies both acute and chronic disease states. Because some lncRNAs may be expressed in cell- and tissue-specific expression patterns, these non-coding RNAs hold great promise as novel biomarkers and as therapeutic targets in health and disease. Herein, we review those lncRNAs implicated in pro- and anti-inflammatory processes of acute and chronic vascular inflammation. An improved understanding of lncRNAs in vascular inflammation may provide new pathophysiological insights in CVD and opportunities for the generation of a new class of RNA-based biomarkers and therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa