RESUMO
Despite the known importance of zinc for human immunity, molecular insights into its roles have remained limited. Here we report a novel autosomal recessive disease characterized by absent B cells, agammaglobulinemia and early onset infections in five unrelated families. The immunodeficiency results from hypomorphic mutations of SLC39A7, which encodes the endoplasmic reticulum-to-cytoplasm zinc transporter ZIP7. Using CRISPR-Cas9 mutagenesis we have precisely modeled ZIP7 deficiency in mice. Homozygosity for a null allele caused embryonic death, but hypomorphic alleles reproduced the block in B cell development seen in patients. B cells from mutant mice exhibited a diminished concentration of cytoplasmic free zinc, increased phosphatase activity and decreased phosphorylation of signaling molecules downstream of the pre-B cell and B cell receptors. Our findings highlight a specific role for cytosolic Zn2+ in modulating B cell receptor signal strength and positive selection.
Assuntos
Agamaglobulinemia/imunologia , Linfócitos B/imunologia , Proteínas de Transporte de Cátions/imunologia , Zinco/imunologia , Agamaglobulinemia/genética , Agamaglobulinemia/metabolismo , Animais , Linfócitos B/metabolismo , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Pré-Escolar , Citosol/imunologia , Citosol/metabolismo , Modelos Animais de Doenças , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Linhagem , Zinco/metabolismoRESUMO
Long-term climate change and periodic environmental extremes threaten food and fuel security1 and global crop productivity2-4. Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience5, these approaches require sufficient knowledge of the genes that underlie productivity and adaptation6-knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate-gene-biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene-trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.
Assuntos
Aclimatação/genética , Biocombustíveis , Genoma de Planta/genética , Genômica , Aquecimento Global , Panicum/genética , Poliploidia , Biomassa , Ecótipo , Evolução Molecular , Fluxo Gênico , Pool Gênico , Introgressão Genética , Anotação de Sequência Molecular , Panicum/classificação , Panicum/crescimento & desenvolvimento , Estados UnidosRESUMO
During gene expression, RNA export factors are mainly known for driving nucleo-cytoplasmic transport. While early studies suggested that the exon junction complex (EJC) provides a binding platform for them, subsequent work proposed that they are only recruited by the cap binding complex to the 5' end of RNAs, as part of TREX. Using iCLIP, we show that the export receptor Nxf1 and two TREX subunits, Alyref and Chtop, are recruited to the whole mRNA co-transcriptionally via splicing but before 3' end processing. Consequently, Alyref alters splicing decisions and Chtop regulates alternative polyadenylation. Alyref is recruited to the 5' end of RNAs by CBC, and our data reveal subsequent binding to RNAs near EJCs. We demonstrate that eIF4A3 stimulates Alyref deposition not only on spliced RNAs close to EJC sites but also on single-exon transcripts. Our study reveals mechanistic insights into the co-transcriptional recruitment of mRNA export factors and how this shapes the human transcriptome.
Assuntos
RNA Helicases DEAD-box/genética , Fator de Iniciação 4A em Eucariotos/genética , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Transcrição Gênica , Transporte Ativo do Núcleo Celular/genética , Sítios de Ligação , RNA Helicases DEAD-box/química , Fator de Iniciação 4A em Eucariotos/química , Éxons/genética , Regulação da Expressão Gênica/genética , Humanos , Proteínas Nucleares/química , Proteínas de Transporte Nucleocitoplasmático/química , Poliadenilação , Transporte de RNA/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/química , Fatores de Transcrição/química , Transcriptoma/genéticaRESUMO
Many predator species make regular excursions from near-surface waters to the twilight (200 to 1,000 m) and midnight (1,000 to 3,000 m) zones of the deep pelagic ocean. While the occurrence of significant vertical movements into the deep ocean has evolved independently across taxonomic groups, the functional role(s) and ecological significance of these movements remain poorly understood. Here, we integrate results from satellite tagging efforts with model predictions of deep prey layers in the North Atlantic Ocean to determine whether prey distributions are correlated with vertical habitat use across 12 species of predators. Using 3D movement data for 344 individuals who traversed nearly 1.5 million km of pelagic ocean in [Formula: see text]42,000 d, we found that nearly every tagged predator frequented the twilight zone and many made regular trips to the midnight zone. Using a predictive model, we found clear alignment of predator depth use with the expected location of deep pelagic prey for at least half of the predator species. We compared high-resolution predator data with shipboard acoustics and selected representative matches that highlight the opportunities and challenges in the analysis and synthesis of these data. While not all observed behavior was consistent with estimated prey availability at depth, our results suggest that deep pelagic biomass likely has high ecological value for a suite of commercially important predators in the open ocean. Careful consideration of the disruption to ecosystem services provided by pelagic food webs is needed before the potential costs and benefits of proceeding with extractive activities in the deep ocean can be evaluated.
Assuntos
Ecossistema , Cadeia Alimentar , Comportamento Predatório , Animais , Oceano Atlântico , BiomassaRESUMO
BACKGROUND: The ITPR1 gene encodes the inositol 1,4,5-trisphosphate (IP3 ) receptor type 1 (IP3 R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood. OBJECTIVES: We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy. METHODS: Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction. RESULTS: We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP3 -binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype-phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression. CONCLUSIONS: This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Aniridia , Anidrases Carbônicas , Ataxia Cerebelar , Deficiência Intelectual , Transtornos dos Movimentos , Degenerações Espinocerebelares , Humanos , Ataxia Cerebelar/genética , Mutação de Sentido Incorreto/genética , Transtornos dos Movimentos/complicações , Atrofia , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genéticaAssuntos
Acidentes , Mortalidade , Tubarões , Navios , Baleias , Animais , Acidentes/estatística & dados numéricos , Oceanos e MaresRESUMO
Levels of dissolved oxygen in open ocean and coastal waters are decreasing (ocean deoxygenation), with poorly understood effects on marine megafauna. All of the more than 1000 species of elasmobranchs (sharks, skates, and rays) are obligate water breathers, with a variety of life-history strategies and oxygen requirements. This review demonstrates that although many elasmobranchs typically avoid hypoxic water, they also appear capable of withstanding mild to moderate hypoxia with changes in activity, ventilatory responses, alterations to circulatory and hematological parameters, and morphological alterations to gill structures. However, such strategies may be insufficient to withstand severe, progressive, or prolonged hypoxia or anoxia where anaerobic metabolic pathways may be used for limited periods. As water temperatures increase with climate warming, ectothermic elasmobranchs will exhibit elevated metabolic rates and are likely to be less able to tolerate the effects of even mild hypoxia associated with deoxygenation. As a result, sustained hypoxic conditions in warmer coastal or surface-pelagic waters are likely to lead to shifts in elasmobranch distributions. Mass mortalities of elasmobranchs linked directly to deoxygenation have only rarely been observed but are likely underreported. One key concern is how reductions in habitat volume as a result of expanding hypoxia resulting from deoxygenation will influence interactions between elasmobranchs and industrial fisheries. Catch per unit of effort of threatened pelagic sharks by longline fisheries, for instance, has been shown to be higher above oxygen minimum zones compared to adjacent, normoxic regions, and attributed to vertical habitat compression of sharks overlapping with increased fishing effort. How a compound stressor such as marine heatwaves alters vulnerability to deoxygenation remains an open question. With over a third of elasmobranch species listed as endangered, a priority for conservation and management now lies in understanding and mitigating ocean deoxygenation effects in addition to population declines already occurring from overfishing.
Assuntos
Oxigênio , Tubarões , Animais , Oxigênio/metabolismo , Tubarões/fisiologia , Rajidae/fisiologia , Oceanos e Mares , Elasmobrânquios/fisiologia , Mudança ClimáticaRESUMO
Species distribution models (SDMs) are becoming an important tool for marine conservation and management. Yet while there is an increasing diversity and volume of marine biodiversity data for training SDMs, little practical guidance is available on how to leverage distinct data types to build robust models. We explored the effect of different data types on the fit, performance and predictive ability of SDMs by comparing models trained with four data types for a heavily exploited pelagic fish, the blue shark (Prionace glauca), in the Northwest Atlantic: two fishery dependent (conventional mark-recapture tags, fisheries observer records) and two fishery independent (satellite-linked electronic tags, pop-up archival tags). We found that all four data types can result in robust models, but differences among spatial predictions highlighted the need to consider ecological realism in model selection and interpretation regardless of data type. Differences among models were primarily attributed to biases in how each data type, and the associated representation of absences, sampled the environment and summarized the resulting species distributions. Outputs from model ensembles and a model trained on all pooled data both proved effective for combining inferences across data types and provided more ecologically realistic predictions than individual models. Our results provide valuable guidance for practitioners developing SDMs. With increasing access to diverse data sources, future work should further develop truly integrative modeling approaches that can explicitly leverage the strengths of individual data types while statistically accounting for limitations, such as sampling biases.
Assuntos
Biodiversidade , Tubarões , Animais , Peixes , Pesqueiros , Previsões , EcossistemaRESUMO
Developing B cells can be positively or negatively selected by self-antigens, but the mechanisms that determine these outcomes are incompletely understood. Here, we show that a B cell intrinsic switch between positive and negative selection during ontogeny is determined by a change from Lin28b to let-7 gene expression. Ectopic expression of a Lin28b transgene in murine B cells restored the positive selection of autoreactive B-1 B cells by self-antigen in adult bone marrow. Analysis of antigen-specific immature B cells in early and late ontogeny identified Lin28b-dependent genes associated with B-1 B cell development, including Arid3a and Bhleh41, and Lin28b-independent effects are associated with the presence or absence of self-antigen. These findings identify cell intrinsic and extrinsic determinants of B cell fate during ontogeny and reconcile lineage and selection theories of B cell development. They explain how changes in the balance of positive and negative selection may be able to adapt to meet the immunological needs of an individual during its lifetime.
Assuntos
Linfócitos B/imunologia , Proteínas de Ligação a RNA/imunologia , Animais , Linfócitos B/citologia , Proliferação de Células , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/imunologia , Proteínas de Ligação a RNA/genéticaRESUMO
The shortfin mako shark is a large-bodied pursuit predator thought to be capable of the highest swimming speeds of any elasmobranch and potentially one of the highest energetic demands of any marine fish. Nonetheless, few direct speed measurements have been reported for this species. Here, animal-borne bio-loggers attached to two mako sharks were used to provide direct measurements of swimming speeds, kinematics and thermal physiology. Mean sustained (cruising) speed was 0.90 m s-1 (±0.07 s.d.) with a mean tail-beat frequency (TBF) of 0.51 Hz (±0.16 s.d.). The maximum burst speed recorded was 5.02 m s-1 (TBFmax = 3.65 Hz) from a 2 m long female. Burst swimming was sustained for 14 s (mean speed = 2.38 m s-1 ), leading to a 0.24°C increase in white muscle temperature in the 12.5 min after the burst. Routine field metabolic rate was estimated at 185.2 mg O2 kg-1 h-1 (at 18°C ambient temperature). Gliding behaviour (zero TBF) was more frequently observed after periods of high activity, especially after capture when internal (white muscle) temperature approached 21°C (ambient temperature: 18.3°C), indicating gliding probably functions as an energy recovery mechanism and limits further metabolic heat production. The results show shortfin mako sharks generally cruise at speeds similar to other endothermic fish - but faster than ectothermic sharks - with the maximum recorded burst speed being among the highest so far directly measured among sharks, tunas and billfishes. This newly recorded high-oxygen-demand performance of mako sharks suggests it may be particularly vulnerable to habitat loss due to climate-driven ocean deoxygenation.
Assuntos
Tubarões , Feminino , Animais , Tubarões/fisiologia , Natação/fisiologia , Músculos , Temperatura , AtumRESUMO
The G4C2 hexanucleotide repeat expansion (HRE) in C9orf72 is the commonest cause of familial amyotrophic lateral sclerosis (ALS). A number of different methods have been used to generate isogenic control lines using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and non-homologous end-joining by deleting the repeat region, with the risk of creating indels and genomic instability. In this study, we demonstrate complete correction of an induced pluripotent stem cell (iPSC) line derived from a C9orf72-HRE positive ALS/frontotemporal dementia patient using CRISPR/Cas9 genome editing and homology-directed repair (HDR), resulting in replacement of the excised region with a donor template carrying the wild-type repeat size to maintain the genetic architecture of the locus. The isogenic correction of the C9orf72 HRE restored normal gene expression and methylation at the C9orf72 locus, reduced intron retention in the edited lines and abolished pathological phenotypes associated with the C9orf72 HRE expansion in iPSC-derived motor neurons (iPSMNs). RNA sequencing of the mutant line identified 2220 differentially expressed genes compared with its isogenic control. Enrichment analysis demonstrated an over-representation of ALS relevant pathways, including calcium ion dependent exocytosis, synaptic transport and the Kyoto Encyclopedia of Genes and Genomes ALS pathway, as well as new targets of potential relevance to ALS pathophysiology. Complete correction of the C9orf72 HRE in iPSMNs by CRISPR/Cas9-mediated HDR provides an ideal model to study the earliest effects of the hexanucleotide expansion on cellular homeostasis and the key pathways implicated in ALS pathophysiology.
Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Esclerose Lateral Amiotrófica/patologia , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Expansão das Repetições de DNA/genética , Feminino , Edição de Genes , Humanos , Masculino , Neurônios Motores/patologia , Fenótipo , Reparo de DNA por Recombinação/genéticaRESUMO
CD4+ T cell functional inhibition (exhaustion) is a hallmark of malaria and correlates with impaired parasite control and infection chronicity. However, the mechanisms of CD4+ T cell exhaustion are still poorly understood. In this study, we show that Ag-experienced (Ag-exp) CD4+ T cell exhaustion during Plasmodium yoelii nonlethal infection occurs alongside the reduction in mammalian target of rapamycin (mTOR) activity and restriction in CD4+ T cell glycolytic capacity. We demonstrate that the loss of glycolytic metabolism and mTOR activity within the exhausted Ag-expCD4+ T cell population during infection coincides with reduction in T-bet expression. T-bet was found to directly bind to and control the transcription of various mTOR and metabolism-related genes within effector CD4+ T cells. Consistent with this, Ag-expTh1 cells exhibited significantly higher and sustained mTOR activity than effector T-bet- (non-Th1) Ag-expT cells throughout the course of malaria. We identified mTOR to be redundant for sustaining T-bet expression in activated Th1 cells, whereas mTOR was necessary but not sufficient for maintaining IFN-γ production by Th1 cells. Immunotherapy targeting PD-1, CTLA-4, and IL-27 blocked CD4+ T cell exhaustion during malaria infection and was associated with elevated T-bet expression and a concomitant increased CD4+ T cell glycolytic metabolism. Collectively, our data suggest that mTOR activity is linked to T-bet in Ag-expCD4+ T cells but that reduction in mTOR activity may not directly underpin Ag-expTh1 cell loss and exhaustion during malaria infection. These data have implications for therapeutic reactivation of exhausted CD4+ T cells during malaria infection and other chronic conditions.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Malária/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Plasmodium yoelii/fisiologia , Proteínas com Domínio T/metabolismo , Células Th1/imunologia , Animais , Senescência Celular , Regulação da Expressão Gênica , Glicólise , Humanos , Tolerância Imunológica , Memória Imunológica , Interferon gama/metabolismo , Interleucina-27/metabolismo , Ativação Linfocitária , Malária/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas com Domínio T/genéticaRESUMO
Groups of basking sharks engaged in circling behaviour are rarely observed, and their function remains enigmatic in the absence of detailed observations. Here, underwater and aerial video recordings of multiple circling groups of basking sharks during late summer (August and September 2016-2021) in the eastern North Atlantic Ocean showed groups numbering between 6 and 23 non-feeding individuals of both sexes. Sharks swam slowly in a rotating "torus" (diameter range: 17-39 m), with individuals layered vertically from the surface to a maximum depth of 16 m. Within a torus, sharks engaged in close-following, echelon, close-flank approach or parallel-swimming behaviours. Measured shark total body lengths were 5.4-9.5 m (mean LT : 7.3 m ± 0.9 s.d.; median: 7.2 m, n = 27), overlapping known lengths of sexually mature males and females. Males possessed large claspers with abrasions that were also observed on female pectoral fins. Female body colouration was paler than that of males, similar to colour changes observed during courtship and mating in other shark species. Individuals associated with most other members rapidly (within minutes), indicating toroidal behaviours facilitate multiple interactions. Sharks interacted through fin-fin and fin-body contacts, rolling to expose the ventral surfaces to following sharks, and breaching behaviour. Toruses formed in late summer when feeding aggregations in zooplankton-rich thermal fronts switched to non-feeding following and circling behaviours. Collectively, the observations explain a courtship function for toruses. This study highlights northeast Atlantic coastal waters as a critical habitat supporting courtship reproductive behaviour of endangered basking sharks, the first such habitat identified for this species globally.
Assuntos
Corte , Tubarões , Masculino , Feminino , Animais , Oceano Atlântico , Ecossistema , Estações do AnoRESUMO
The accuracy and reliability of DNA metabarcoding analyses depend on the breadth and quality of the reference libraries that underpin them. However, there are limited options available to obtain and curate the huge volumes of sequence data that are available on public repositories such as NCBI and BOLD. Here, we provide a pipeline to download, clean and annotate mitochondrial DNA sequence data for a given list of fish species. Features of this pipeline include (a) support for multiple metabarcode markers; (b) searches on species synonyms and taxonomic name validation; (c) phylogeny assisted quality control for identification and removal of misannotated sequences; (d) automatically generated coverage reports for each new GenBank release update; and (e) citable, versioned DOIs. As an example we provide a ready-to-use curated reference library for the marine and freshwater fishes of the U.K. To augment this reference library for environmental DNA metabarcoding specifically, we generated 241 new MiFish-12S sequences for 88 U.K. marine species, and make available new primer sets useful for sequencing these. This brings the coverage of common U.K. species for the MiFish-12S fragment to 93%, opening new avenues for scaling up fish metabarcoding across wide spatial gradients. The Meta-Fish-Lib reference library and pipeline is hosted at https://github.com/genner-lab/meta-fish-lib.
Assuntos
Código de Barras de DNA Taxonômico , DNA Ambiental , Animais , Biodiversidade , Peixes/genética , Biblioteca Gênica , Reprodutibilidade dos TestesRESUMO
The metabotropic glutamate receptor 1 (mGluR1) is abundantly expressed in the mammalian central nervous system, where it regulates intracellular calcium homeostasis in response to excitatory signaling. Here, we describe heterozygous dominant mutations in GRM1, which encodes mGluR1, that are associated with distinct disease phenotypes: gain-of-function missense mutations, linked in two different families to adult-onset cerebellar ataxia, and a de novo truncation mutation resulting in a dominant-negative effect that is associated with juvenile-onset ataxia and intellectual disability. Crucially, the gain-of-function mutations could be pharmacologically modulated in vitro using an existing FDA-approved drug, Nitazoxanide, suggesting a possible avenue for treatment, which is currently unavailable for ataxias.
Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Mutação de Sentido Incorreto/genética , Receptores de Glutamato Metabotrópico/genética , Ataxias Espinocerebelares/genética , Tiazóis/farmacologia , Antiparasitários/farmacologia , Feminino , Células HEK293 , Humanos , Masculino , Nitrocompostos , Linhagem , Transdução de Sinais/efeitos dos fármacos , Ataxias Espinocerebelares/patologiaRESUMO
Sequencing technologies have placed a wide range of genomic analyses within the capabilities of many laboratories. However, sequencing costs often set limits to the amount of sequences that can be generated and, consequently, the biological outcomes that can be achieved from an experimental design. In this Review, we discuss the issue of sequencing depth in the design of next-generation sequencing experiments. We review current guidelines and precedents on the issue of coverage, as well as their underlying considerations, for four major study designs, which include de novo genome sequencing, genome resequencing, transcriptome sequencing and genomic location analyses (for example, chromatin immunoprecipitation followed by sequencing (ChIP-seq) and chromosome conformation capture (3C)).
Assuntos
Imunoprecipitação da Cromatina/métodos , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Guias como Assunto , HumanosRESUMO
Sorghum bicolor is a drought tolerant C4 grass used for the production of grain, forage, sugar, and lignocellulosic biomass and a genetic model for C4 grasses due to its relatively small genome (approximately 800 Mbp), diploid genetics, diverse germplasm, and colinearity with other C4 grass genomes. In this study, deep sequencing, genetic linkage analysis, and transcriptome data were used to produce and annotate a high-quality reference genome sequence. Reference genome sequence order was improved, 29.6 Mbp of additional sequence was incorporated, the number of genes annotated increased 24% to 34 211, average gene length and N50 increased, and error frequency was reduced 10-fold to 1 per 100 kbp. Subtelomeric repeats with characteristics of Tandem Repeats in Miniature (TRIM) elements were identified at the termini of most chromosomes. Nucleosome occupancy predictions identified nucleosomes positioned immediately downstream of transcription start sites and at different densities across chromosomes. Alignment of more than 50 resequenced genomes from diverse sorghum genotypes to the reference genome identified approximately 7.4 M single nucleotide polymorphisms (SNPs) and 1.9 M indels. Large-scale variant features in euchromatin were identified with periodicities of approximately 25 kbp. A transcriptome atlas of gene expression was constructed from 47 RNA-seq profiles of growing and developed tissues of the major plant organs (roots, leaves, stems, panicles, and seed) collected during the juvenile, vegetative and reproductive phases. Analysis of the transcriptome data indicated that tissue type and protein kinase expression had large influences on transcriptional profile clustering. The updated assembly, annotation, and transcriptome data represent a resource for C4 grass research and crop improvement.
Assuntos
Variação Genética/genética , Genoma de Planta/genética , Sorghum/genética , Transcriptoma , Análise por Conglomerados , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Anotação de Sequência Molecular , Nucleossomos/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
OBJECTIVE: Defective mitochondrial function attributed to optic atrophy 1 (OPA1) mutations causes primarily optic atrophy and, less commonly, neurodegenerative syndromes. The pathomechanism by which OPA1 mutations trigger diffuse loss of neurons in some, but not all, patients is unknown. Here, we used a tractable induced pluripotent stem cell (iPSC)-based model to capture the biology of OPA1 haploinsufficiency in cases presenting with classic eye disease versus syndromic parkinsonism. METHODS: iPSCs were generated from 2 patients with OPA1 haploinsufficiency and 2 controls and differentiated into dopaminergic neurons. Metabolic profile was determined by extracellular flux analysis, respiratory complex levels using immunoblotting, and complex I activity by a colorimetric assay. Mitochondria were examined by transmission electron microscopy. Mitochondrial DNA copy number and deletions were assayed using long-range PCR. Mitochondrial membrane potential was measured by tetramethylrhodamine methyl ester uptake, and mitochondrial fragmentation was assessed by confocal microscopy. Exome sequencing was used to screen for pathogenic variants. RESULTS: OPA1 haploinsufficient iPSCs differentiated into dopaminergic neurons and exhibited marked reduction in OPA1 protein levels. Loss of OPA1 caused a late defect in oxidative phosphorylation, reduced complex I levels, and activity without a significant change in the ultrastructure of mitochondria. Loss of neurons in culture recapitulated dopaminergic degeneration in syndromic disease and correlated with mitochondrial fragmentation. INTERPRETATION: OPA1 levels maintain oxidative phosphorylation in iPSC-derived neurons, at least in part, by regulating the stability of complex I. Severity of OPA1 disease associates primarily with the extent of OPA1-mediated fusion, suggesting that activation of this mechanism or identification of its genetic modifiers may have therapeutic or prognostic value. Ann Neurol 2018;83:915-925.
Assuntos
GTP Fosfo-Hidrolases/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Transtornos Parkinsonianos/metabolismo , DNA Mitocondrial/genética , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Atrofia Óptica/genética , Fosforilação Oxidativa , Transtornos Parkinsonianos/genéticaRESUMO
Polymicrogyria is a malformation of cortical development. The aetiology of polymicrogyria remains poorly understood. Using whole-exome sequencing we found de novo heterozygous missense GRIN1 mutations in 2 of 57 parent-offspring trios with polymicrogyria. We found nine further de novo missense GRIN1 mutations in additional cortical malformation patients. Shared features in the patients were extensive bilateral polymicrogyria associated with severe developmental delay, postnatal microcephaly, cortical visual impairment and intractable epilepsy. GRIN1 encodes GluN1, the essential subunit of the N-methyl-d-aspartate receptor. The polymicrogyria-associated GRIN1 mutations tended to cluster in the S2 region (part of the ligand-binding domain of GluN1) or the adjacent M3 helix. These regions are rarely mutated in the normal population or in GRIN1 patients without polymicrogyria. Using two-electrode and whole-cell voltage-clamp analysis, we showed that the polymicrogyria-associated GRIN1 mutations significantly alter the in vitro activity of the receptor. Three of the mutations increased agonist potency while one reduced proton inhibition of the receptor. These results are striking because previous GRIN1 mutations have generally caused loss of function, and because N-methyl-d-aspartate receptor agonists have been used for many years to generate animal models of polymicrogyria. Overall, our results expand the phenotypic spectrum associated with GRIN1 mutations and highlight the important role of N-methyl-d-aspartate receptor signalling in the pathogenesis of polymicrogyria.
Assuntos
Mutação/genética , Proteínas do Tecido Nervoso/genética , Polimicrogiria/genética , Receptores de N-Metil-D-Aspartato/genética , Animais , Criança , Pré-Escolar , Análise Mutacional de DNA , Agonistas de Aminoácidos Excitatórios/farmacologia , Saúde da Família , Feminino , Ácido Glutâmico/farmacologia , Glicina/metabolismo , Glicina/farmacologia , Células HEK293 , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Potenciais da Membrana/genética , Modelos Moleculares , Mutagênese/genética , N-Metilaspartato/farmacologia , Técnicas de Patch-Clamp , Polimicrogiria/diagnóstico por imagem , Ratos , TransfecçãoRESUMO
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that "Lévy random walks"-which can produce power law path length distributions-are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent's goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.