Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 12(8): 2289-301, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21966920

RESUMO

Syntrophomonas wolfei is a specialist, evolutionarily adapted for syntrophic growth with methanogens and other hydrogen- and/or formate-using microorganisms. This slow-growing anaerobe has three putative ribosome RNA operons, each of which has 16S rRNA and 23S rRNA genes of different length and multiple 5S rRNA genes. The genome also contains 10 RNA-directed, DNA polymerase genes. Genomic analysis shows that S. wolfei relies solely on the reduction of protons, bicarbonate or unsaturated fatty acids to re-oxidize reduced cofactors. Syntrophomonas wolfei lacks the genes needed for aerobic or anaerobic respiration and has an exceptionally limited ability to create ion gradients. An ATP synthase and a pyrophosphatase were the only systems detected capable of creating an ion gradient. Multiple homologues for ß-oxidation genes were present even though S. wolfei uses a limited range of fatty acids from four to eight carbons in length.Syntrophomonas wolfei, other syntrophic metabolizers with completed genomic sequences, and thermophilic anaerobes known to produce high molar ratios of hydrogen from glucose have genes to produce H(2) from NADH by an electron bifurcation mechanism. Comparative genomic analysis also suggests that formate production from NADH may involve electron bifurcation. A membrane-bound, iron-sulfur oxidoreductase found in S. wolfei and Syntrophus aciditrophicus may be uniquely involved in reverse electron transport during syntrophic fatty acid metabolism. The genome sequence of S. wolfei reveals several core reactions that may be characteristic of syntrophic fatty acid metabolism and illustrates how biological systems produce hydrogen from thermodynamically difficult reactions.


Assuntos
Genoma Bacteriano , Bacilos Gram-Positivos Formadores de Endosporo/genética , Bacilos Gram-Positivos Formadores de Endosporo/metabolismo , Hidrogênio/metabolismo , DNA Bacteriano/genética , Ácidos Graxos/metabolismo , Formiatos/metabolismo , Oxirredução , RNA Ribossômico/genética , Análise de Sequência de DNA
2.
Environ Microbiol ; 12(10): 2738-54, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20482743

RESUMO

Spore-forming, Gram-positive sulfate-reducing bacteria (SRB) represent a group of SRB that dominates the deep subsurface as well as niches in which resistance to oxygen and dessication is an advantage. Desulfotomaculum reducens strain MI-1 is one of the few cultured representatives of that group with a complete genome sequence available. The metabolic versatility of this organism is reflected in the presence of genes encoding for the oxidation of various electron donors, including three- and four-carbon fatty acids and alcohols. Synteny in genes involved in sulfate reduction across all four sequenced Gram-positive SRB suggests a distinct sulfate-reduction mechanism for this group of bacteria. Based on the genomic information obtained for sulfate reduction in D. reducens, the transfer of electrons to the sulfite and APS reductases is proposed to take place via the quinone pool and heterodisulfide reductases respectively. In addition, both H(2) -evolving and H(2) -consuming cytoplasmic hydrogenases were identified in the genome, pointing to potential cytoplasmic H(2) cycling in the bacterium. The mechanism of metal reduction remains unknown.


Assuntos
Desulfotomaculum/genética , Desulfotomaculum/metabolismo , Genoma Bacteriano , Metais/metabolismo , Sulfatos/metabolismo , Sequência de Bases , DNA Bacteriano/análise , Desulfotomaculum/classificação , Hidrogênio/metabolismo , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
3.
J Bacteriol ; 191(11): 3760-1, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19346307

RESUMO

"Anaerocellum thermophilum" DSM 6725 is a strictly anaerobic bacterium that grows optimally at 75 degrees C. It uses a variety of polysaccharides, including crystalline cellulose and untreated plant biomass, and has potential utility in biomass conversion. Here we report its complete genome sequence of 2.97 Mb, which is contained within one chromosome and two plasmids (of 8.3 and 3.6 kb). The genome encodes a broad set of cellulolytic enzymes, transporters, and pathways for sugar utilization and compared to those of other saccharolytic, anaerobic thermophiles is most similar to that of Caldicellulosiruptor saccharolyticus DSM 8903.


Assuntos
Bactérias Anaeróbias/genética , Genoma Bacteriano/genética , Bacilos Gram-Positivos Formadores de Endosporo/genética , Cromossomos Bacterianos/genética , Humanos , Dados de Sequência Molecular , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa