Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 553(7686): 101-105, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29258295

RESUMO

Genomic sequencing has driven precision-based oncology therapy; however, the genetic drivers of many malignancies remain unknown or non-targetable, so alternative approaches to the identification of therapeutic leads are necessary. Ependymomas are chemotherapy-resistant brain tumours, which, despite genomic sequencing, lack effective molecular targets. Intracranial ependymomas are segregated on the basis of anatomical location (supratentorial region or posterior fossa) and further divided into distinct molecular subgroups that reflect differences in the age of onset, gender predominance and response to therapy. The most common and aggressive subgroup, posterior fossa ependymoma group A (PF-EPN-A), occurs in young children and appears to lack recurrent somatic mutations. Conversely, posterior fossa ependymoma group B (PF-EPN-B) tumours display frequent large-scale copy number gains and losses but have favourable clinical outcomes. More than 70% of supratentorial ependymomas are defined by highly recurrent gene fusions in the NF-κB subunit gene RELA (ST-EPN-RELA), and a smaller number involve fusion of the gene encoding the transcriptional activator YAP1 (ST-EPN-YAP1). Subependymomas, a distinct histologic variant, can also be found within the supratetorial and posterior fossa compartments, and account for the majority of tumours in the molecular subgroups ST-EPN-SE and PF-EPN-SE. Here we describe mapping of active chromatin landscapes in 42 primary ependymomas in two non-overlapping primary ependymoma cohorts, with the goal of identifying essential super-enhancer-associated genes on which tumour cells depend. Enhancer regions revealed putative oncogenes, molecular targets and pathways; inhibition of these targets with small molecule inhibitors or short hairpin RNA diminished the proliferation of patient-derived neurospheres and increased survival in mouse models of ependymomas. Through profiling of transcriptional enhancers, our study provides a framework for target and drug discovery in other cancers that lack known genetic drivers and are therefore difficult to treat.


Assuntos
Elementos Facilitadores Genéticos/genética , Ependimoma/tratamento farmacológico , Ependimoma/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/genética , Terapia de Alvo Molecular , Oncogenes/genética , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Ependimoma/classificação , Ependimoma/patologia , Feminino , Humanos , Camundongos , Medicina de Precisão , Interferência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Curr Oncol Rep ; 20(9): 69, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29995179

RESUMO

PURPOSE OF REVIEW: Malignant embryonal brain tumors (EBTs) of childhood span a wide clinical spectrum but can share remarkably similar morphologic features. This overlap presents significant diagnostic challenges, particularly for tumor entities that are rarely encountered in clinical practice and for which diagnostic criteria were poorly defined. This review will provide an update on the evolving characterization and treatment of rare EBTs. RECENT FINDINGS: Rapid advances in genomic tools have led to the discovery of robust molecular markers, and identification of novel tumor types and subtypes for almost all major categories of pediatric brain tumors. These developments have had significant impact on improving the diagnostic classification of the rare EBTs, particularly for tumors with newly recognized C19MC alterations, central nervous system primitive neuroectodermal tumors (CNS-PNET), and pineoblastoma (PB). These important developments in the clinical and molecular understanding of rare EBTs are paving the way for novel therapeutic strategies and improved clinical management.


Assuntos
Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/terapia , Neoplasias Embrionárias de Células Germinativas/terapia , Doenças Raras/terapia , Gerenciamento Clínico , Humanos , Prognóstico
3.
Lancet Oncol ; 16(5): 569-82, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25882982

RESUMO

BACKGROUND: Rhabdoid brain tumours, also called atypical teratoid rhabdoid tumours, are lethal childhood cancers with characteristic genetic alterations of SMARCB1/hSNF5. Lack of biological understanding of the substantial clinical heterogeneity of these tumours restricts therapeutic advances. We integrated genomic and clinicopathological analyses of a cohort of patients with atypical teratoid rhabdoid tumours to find out the molecular basis for clinical heterogeneity in these tumours. METHODS: We obtained 259 rhabdoid tumours from 37 international institutions and assessed transcriptional profiles in 43 primary tumours and copy number profiles in 38 primary tumours to discover molecular subgroups of atypical teratoid rhabdoid tumours. We used gene and pathway enrichment analyses to discover group-specific molecular markers and did immunohistochemical analyses on 125 primary tumours to evaluate clinicopathological significance of molecular subgroup and ASCL1-NOTCH signalling. FINDINGS: Transcriptional analyses identified two atypical teratoid rhabdoid tumour subgroups with differential enrichment of genetic pathways, and distinct clinicopathological and survival features. Expression of ASCL1, a regulator of NOTCH signalling, correlated with supratentorial location (p=0·004) and superior 5-year overall survival (35%, 95% CI 13-57, and 20%, 6-34, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·033) in 70 patients who received multimodal treatment. ASCL1 expression also correlated with superior 5-year overall survival (34%, 7-61, and 9%, 0-21, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·001) in 39 patients who received only chemotherapy without radiation. Cox hazard ratios for overall survival in patients with differential ASCL1 enrichment treated with chemotherapy with or without radiation were 2·02 (95% CI 1·04-3·85; p=0·038) and 3·98 (1·71-9·26; p=0·001). Integrated analyses of molecular subgroupings with clinical prognostic factors showed three distinct clinical risk groups of tumours with different therapeutic outcomes. INTERPRETATION: An integration of clinical risk factors and tumour molecular groups can be used to identify patients who are likely to have improved long-term radiation-free survival and might help therapeutic stratification of patients with atypical teratoid rhabdoid tumours. FUNDING: C17 Research Network, Genome Canada, b.r.a.i.n.child, Mitchell Duckman, Tal Doron and Suri Boon foundations.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Genômica , Receptores Notch/biossíntese , Tumor Rabdoide/genética , Teratoma/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Criança , Pré-Escolar , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Lactente , Masculino , Prognóstico , Receptores Notch/genética , Tumor Rabdoide/patologia , Fatores de Risco , Transdução de Sinais/genética , Teratoma/patologia
4.
Acta Neuropathol ; 128(2): 291-303, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24839957

RESUMO

Amplification of the C19MC oncogenic miRNA cluster and high LIN28 expression has been linked to a distinctly aggressive group of cerebral CNS-PNETs (group 1 CNS-PNETs) arising in young children. In this study, we sought to evaluate the diagnostic specificity of C19MC and LIN28, and the clinical and biological spectra of C19MC amplified and/or LIN28+ CNS-PNETs. We interrogated 450 pediatric brain tumors using FISH and IHC analyses and demonstrate that C19MC alteration is restricted to a sub-group of CNS-PNETs with high LIN28 expression; however, LIN28 immunopositivity was not exclusive to CNS-PNETs but was also detected in a proportion of other malignant pediatric brain tumors including rhabdoid brain tumors and malignant gliomas. C19MC amplified/LIN28+ group 1 CNS-PNETs arose predominantly in children <4 years old; a majority arose in the cerebrum but 24 % (13/54) of tumors had extra-cerebral origins. Notably, group 1 CNS-PNETs encompassed several histologic classes including embryonal tumor with abundant neuropil and true rosettes (ETANTR), medulloepithelioma, ependymoblastoma and CNS-PNETs with variable differentiation. Strikingly, gene expression and methylation profiling analyses revealed a common molecular signature enriched for primitive neural features, high LIN28/LIN28B and DNMT3B expression for all group 1 CNS-PNETs regardless of location or tumor histology. Our collective findings suggest that current known histologic categories of CNS-PNETs which include ETANTRs, medulloepitheliomas, ependymoblastomas in various CNS locations, comprise a common molecular and diagnostic entity and identify inhibitors of the LIN28/let7/PI3K/mTOR axis and DNMT3B as promising therapeutics for this distinct histogenetic entity.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , MicroRNAs/genética , Tumores Neuroectodérmicos Primitivos/genética , Tumores Neuroectodérmicos Primitivos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adolescente , Idade de Início , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Criança , Pré-Escolar , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Diagnóstico Diferencial , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Masculino , Família Multigênica , Tumores Neuroectodérmicos Primitivos/diagnóstico , Tumores Neuroectodérmicos Primitivos/terapia , DNA Metiltransferase 3B
5.
J Pathol Inform ; 15: 100360, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38292073

RESUMO

Hepatocellular carcinoma (HCC) is among the most common cancers worldwide, and tumor recurrence following liver resection or transplantation is one of the highest contributors to mortality in HCC patients after surgery. Using artificial intelligence (AI), we developed an interdisciplinary model to predict HCC recurrence and patient survival following surgery. We collected whole-slide H&E images, clinical variables, and follow-up data from 300 patients with HCC who underwent transplant and 169 patients who underwent resection at the Cleveland Clinic. A deep learning model was trained to predict recurrence-free survival (RFS) and disease-specific survival (DSS) from the H&E-stained slides. Repeated cross-validation splits were used to compute robust C-index estimates, and the results were compared to those obtained by fitting a Cox proportional hazard model using only clinical variables. While the deep learning model alone was predictive of recurrence and survival among patients in both cohorts, integrating the clinical and histologic models significantly increased the C-index in each cohort. In every subgroup analyzed, we found that a combined clinical and deep learning model better predicted post-surgical outcome in HCC patients compared to either approach independently.

6.
Nat Aging ; 1(9): 783-794, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-37117627

RESUMO

Extreme longevity in humans has a strong genetic component, but whether this involves genetic variation in the same longevity pathways as found in model organisms is unclear. Using whole-exome sequences of a large cohort of Ashkenazi Jewish centenarians to examine enrichment for rare coding variants, we found most longevity-associated rare coding variants converge upon conserved insulin/insulin-like growth factor 1 signaling and AMP-activating protein kinase signaling pathways. Centenarians have a number of pathogenic rare coding variants similar to control individuals, suggesting that rare variants detected in the conserved longevity pathways are protective against age-related pathology. Indeed, we detected a pro-longevity effect of rare coding variants in the Wnt signaling pathway on individuals harboring the known common risk allele APOE4. The genetic component of extreme human longevity constitutes, at least in part, rare coding variants in pathways that protect against aging, including those that control longevity in model organisms.


Assuntos
Envelhecimento , Longevidade , Idoso de 80 Anos ou mais , Humanos , Longevidade/genética , Envelhecimento/genética , Transdução de Sinais , Centenários , Alelos
7.
Aging Cell ; 19(10): e13216, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32860726

RESUMO

Centenarians (exceptionally long-lived individuals-ELLI) are a unique segment of the population, exhibiting long human lifespan and healthspan, despite generally practicing similar lifestyle habits as their peers. We tested disease-associated mutation burden in ELLI genomes by determining the burden of pathogenic variants reported in the ClinVar and HGMD databases using data from whole exome sequencing (WES) conducted in a cohort of ELLI, their offspring, and control individuals without antecedents of familial longevity (n = 1879), all descendent from the founder population of Ashkenazi Jews. The burden of pathogenic variants did not differ between the three groups. Additional analyses of variants subtypes and variant effect predictor (VEP) biotype frequencies did not reveal a decrease of pathogenic or loss-of-function (LoF) variants in ELLI and offspring compared to the control group. Case-control pathogenic variants enrichment analyses conducted in ELLI and controls also did not identify significant differences in any of the variants between the groups and polygenic risk scores failed to provide a predictive model. Interestingly, cancer and Alzheimer's disease-associated variants were significantly depleted in ELLI compared to controls, suggesting slower accumulation of mutation. That said, polygenic risk score analysis failed to find any predictive variants among the functional variants tested. The high similarity in the burden of pathogenic variation between ELLI and individuals without familial longevity supports the notion that extension of lifespan and healthspan in ELLI is not a consequence of pathogenic variant depletion but rather a result of other genomic, epigenomic, or potentially nongenomic properties.


Assuntos
Longevidade/genética , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Variação Genética , Humanos , Masculino
8.
Cancer Cell ; 35(1): 7-9, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30645977

RESUMO

Diffuse intrinsic brain stem gliomas (DIPGs) with characteristic K27M mutation of H3.3 are lethal and poorly understood childhood cancers. In this issue of Cancer Cell, Larson et al. exploit a unique murine DIPG model with inducible, endogenous K27M expression to reveal insights into mechanisms of K27M-mediated transformation in DIPG.


Assuntos
Neoplasias do Tronco Encefálico , Glioma , Animais , Histonas/genética , Camundongos , Mutação
9.
Cancer Cell ; 36(1): 51-67.e7, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31287992

RESUMO

Embryonal tumors with multilayered rosettes (ETMRs) are highly lethal infant brain cancers with characteristic amplification of Chr19q13.41 miRNA cluster (C19MC) and enrichment of pluripotency factor LIN28A. Here we investigated C19MC oncogenic mechanisms and discovered a C19MC-LIN28A-MYCN circuit fueled by multiple complex regulatory loops including an MYCN core transcriptional network and super-enhancers resulting from long-range MYCN DNA interactions and C19MC gene fusions. Our data show that this powerful oncogenic circuit, which entraps an early neural lineage network, is potently abrogated by bromodomain inhibitor JQ1, leading to ETMR cell death.


Assuntos
Neoplasias Encefálicas/etiologia , Cromossomos Humanos Par 19 , MicroRNAs/genética , Família Multigênica , Proteína Proto-Oncogênica N-Myc/genética , Neoplasias Embrionárias de Células Germinativas/etiologia , Proteínas de Ligação a RNA/genética , Biomarcadores Tumorais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Ciclo Celular/genética , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Cromossomos Humanos Par 2 , Variações do Número de Cópias de DNA , Elementos Facilitadores Genéticos , Epigênese Genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Modelos Biológicos , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Neoplasias Embrionárias de Células Germinativas/terapia , Oncogenes
10.
Cancer Cell ; 30(6): 891-908, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27960086

RESUMO

We recently reported that atypical teratoid rhabdoid tumors (ATRTs) comprise at least two transcriptional subtypes with different clinical outcomes; however, the mechanisms underlying therapeutic heterogeneity remained unclear. In this study, we analyzed 191 primary ATRTs and 10 ATRT cell lines to define the genomic and epigenomic landscape of ATRTs and identify subgroup-specific therapeutic targets. We found ATRTs segregated into three epigenetic subgroups with distinct genomic profiles, SMARCB1 genotypes, and chromatin landscape that correlated with differential cellular responses to a panel of signaling and epigenetic inhibitors. Significantly, we discovered that differential methylation of a PDGFRB-associated enhancer confers specific sensitivity of group 2 ATRT cells to dasatinib and nilotinib, and suggest that these are promising therapies for this highly lethal ATRT subtype.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Cromatina/genética , Epigenômica/métodos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Tumor Rabdoide/genética , Proteína SMARCB1/genética , Teratoma/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Metilação de DNA , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Humanos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Tumor Rabdoide/tratamento farmacológico , Teratoma/tratamento farmacológico
11.
Expert Opin Ther Targets ; 18(10): 1103-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25142793

RESUMO

Malignant brain tumors, which are the leading cause of cancer-related morbidity and mortality in children, span a wide spectrum of diseases with distinct clinical phenotypes but may share remarkably similar morphologic features. Until recently, few molecular markers of childhood brain tumors have been identified, which has limited therapeutic advances. Recent global genomic studies have enabled robust molecular classification of childhood brain tumors and the identification and consolidation of rare, seemingly disparate clinical entities. It is now increasingly evident that deregulation of epigenetic processes contributes substantially to heterogeneity in tumor phenotypes and comprise significant drivers of cancer initiation and progression. Specifically, DNA hypermethylation and silencing of critical tumor suppressor genes by DNA methyltransferases (DNMT) has emerged as an important and fundamental mechanism in brain tumor pathogenesis. These observations have been underscored by the recent discovery of TTYH1-C19MC gene fusions in an aggressive pediatric embryonal brain tumor, which results in deregulation and increased expression of a neural-specific DNMT3B isoform in C19MC-associated brain tumors. Our observations that pharmacological inhibitors of DNMTs and histone deacetylases significantly inhibit growth of cells derived from C19MC-associated tumors indicate targeting of epigenomic modifiers as a novel therapeutic approach for these highly treatment-resistant tumors.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Desenho de Fármacos , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Terapia de Alvo Molecular , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia
12.
Neuro Oncol ; 16(1): 62-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24311633

RESUMO

BACKGROUND: Embryonal tumor with multilayered rosettes (ETMR) is an aggressive central nervous system primitive neuroectodermal tumor (CNS-PNET) variant. ETMRs have distinctive histology, amplification of the chromosome 19 microRNA cluster (C19MC) at chr19q13.41-42, expression of the RNA binding protein Lin28, and dismal prognosis. Functional and therapeutic studies of ETMR have been limited by a lack of model systems. METHODS: We have established a first cell line, BT183, from a case of ETMR and characterized its molecular and cellular features. LIN28 knockdown was performed in BT183 to examine the potential role of Lin28 in regulating signaling pathway gene expression in ETMR. Cell line findings were corroborated with immunohistochemical studies in ETMR tissues. A drug screen of 73 compounds was performed to identify potential therapeutic targets. RESULTS: The BT183 line maintains C19MC amplification, expresses C19MC-encoded microRNAs, and is tumor initiating. ETMRs, including BT183, have high LIN28 expression and low let-7 miRNA expression, and show evidence of mTOR pathway activation. LIN28 knockdown increases let-7 expression and decreases expression of IGF/PI3K/mTOR pathway components. Pharmacologic inhibition of the mTOR pathway reduces BT183 cell viability. CONCLUSIONS: BT183 retains key genetic and histologic features of ETMR. In ETMR, Lin28 is not only a diagnostic marker but also a regulator of genes involved in growth and metabolism. Our findings indicate that inhibitors of the IGF/PI3K/mTOR pathway may be promising novel therapies for these fatal embryonal tumors. As the first patient-derived cell line of these rare tumors, BT183 is an important, unique reagent for investigating ETMR biology and therapeutics.


Assuntos
Cromossomos Humanos Par 19/genética , Amplificação de Genes , MicroRNAs/metabolismo , Neoplasias Embrionárias de Células Germinativas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Técnicas de Cultura de Células , Pré-Escolar , Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Hibridização in Situ Fluorescente , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Tumores Neuroectodérmicos Primitivos/genética , Tumores Neuroectodérmicos Primitivos/metabolismo , Tumores Neuroectodérmicos Primitivos/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Genet ; 46(1): 39-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24316981

RESUMO

Embryonal tumors with multilayered rosettes (ETMRs) are rare, deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified, in all cases, C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors, cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2, a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic, brain-specific DNMT3B isoform.


Assuntos
Neoplasias Encefálicas/genética , Cromossomos Humanos Par 19 , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Membrana/genética , MicroRNAs/genética , Neoplasias Embrionárias de Células Germinativas/genética , Pré-Escolar , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Fusão Gênica , Humanos , Masculino , Isoformas de Proteínas , Proteína p130 Retinoblastoma-Like/genética , Ensaios Antitumorais Modelo de Xenoenxerto , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa