Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 25(22): 26987-26999, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092180

RESUMO

Microscale, continuous-profile, diffractive lenses have been fabricated and characterized. Lenses designed to operate at λ0 = 405 nm were created by focused ion beam milling of a glass substrate. The micro-structured profile was analysed by confocal microscopy and optical performance was quantified by measurements of the transmitted laser beam profile. Lenses of size 125 µm × 125 µm, containing up to 18 annuli and focusing at 400 µm, 450 µm and 500 µm have been made. Measured focused beams were in excellent agreement with the predicted performance. A maximum diffraction efficiency of 84 % and side-lobe suppression down to the 10-4 level can be achieved. The suitability of the lenses for interfacing with trappedion systems is outlined.

2.
Opt Express ; 22(19): 23121-8, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321782

RESUMO

We present results from the first field-trial of a quantum-secured DWDM transmission system, in which quantum key distribution (QKD) is combined with 4 × 10 Gb/s encrypted data and transmitted simultaneously over 26 km of field installed fiber. QKD is used to frequently refresh the key for AES-256 encryption of the 10 Gb/s data traffic. Scalability to over 40 DWDM channels is analyzed.


Assuntos
Segurança Computacional/instrumentação , Desenho Assistido por Computador , Tecnologia de Fibra Óptica/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Telecomunicações/instrumentação , Desenho de Equipamento
3.
Opt Express ; 21(16): 18712-23, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23938787

RESUMO

We demonstrate a system for fast and agile digital control of laser phase, amplitude and frequency for applications in coherent atomic systems. The full versatility of a direct digital synthesis radiofrequency source is faithfully transferred to laser radiation via acousto-optic modulation. Optical beatnotes are used to measure phase steps up to 2π, which are accurately implemented with a resolution of ≤ 10 mrad. By linearizing the optical modulation process, amplitude-shaped pulses of durations ranging from 500 ns to 500 ms, in excellent agreement with the programmed functional form, are demonstrated. Pulse durations are limited only by the 30 ns rise time of the modulation process, and a measured extinction ratio of > 5 × 10(11) is achieved. The system presented here was developed specifically for controlling the quantum state of trapped ions with sequences of multiple laser pulses, including composite and bichromatic pulses. The demonstrated techniques are widely applicable to other atomic systems ranging across quantum information processing, frequency metrology, atom interferometry, and single-photon generation.

4.
Nat Nanotechnol ; 7(9): 572-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22820742

RESUMO

The coherent control of quantum-entangled states of trapped ions has led to significant advances in quantum information, quantum simulation, quantum metrology and laboratory tests of quantum mechanics and relativity. All of the basic requirements for processing quantum information with arrays of ion-based quantum bits (qubits) have been proven in principle. However, so far, no more than 14 ion-based qubits have been entangled with the ion-trap approach, so there is a clear need for arrays of ion traps that can handle a much larger number of qubits. Traps consisting of a two-dimensional electrode array have undergone significant development, but three-dimensional trap geometries can create a superior confining potential. However, existing three-dimensional approaches, as used in the most advanced experiments with trap arrays, cannot be scaled up to handle greatly increased numbers of ions. Here, we report a monolithic three-dimensional ion microtrap array etched from a silica-on-silicon wafer using conventional semiconductor fabrication technology. We have confined individual (88)Sr(+) ions and strings of up to 14 ions in a single segment of the array. We have measured motional frequencies, ion heating rates and storage times. Our results demonstrate that it should be possible to handle several tens of ion-based qubits with this approach.


Assuntos
Íons/química , Semicondutores , Eletrodos , Fluorescência , Espectrometria de Massas , Teoria Quântica , Silício/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa