Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(23): 12452-12458, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37256269

RESUMO

We report on the synthesis of an authentic Sn═B-moiety realized in a stannaborenyl anion and stannaborenium cation. Starting with an oxidative addition of boron tribromide to a stannylene-phosphine Lewis pair [o-C6H4(Ar*BrSn-BBr2-PPh2)] (2a) [Ar* = C6H3(2,6-Trip)2, Trip = 2,4,6-C6H2iPr3] was synthesized. Reduction of 2a with magnesium yields the Grignard-type stannaborene [o-C6H4(Ar*Sn═B{PPh2}MgBr{thf})]2 (3)2 featuring a Sn═B double bond and a B-Mg interaction. Following an alternative protocol, hydride substitution at 2a yields the tinhydride [o-C6H4(Ar*HSn-BBr2-PPh2)] (4a). HBr elimination of 4a in reaction with MeNHC (MeNHC = 1,3,4,5-tetramethylimidazol-2-ylidene) gives the carbene and phosphine stabilized stannyl-borylene [o-C6H4(Ar*BrSn-B{PPh2}{MeNHC})] (5) after simultaneous bromide transfer from boron to tin. In reaction of 5 with Li[Al(OC{CF3}3)4] or Na[BArF4] in a mixture of o-DFB/benzene a stannaborene [o-C6H4(Ar*Sn═B{PPh2}{MeNHC})]+ [6] stabilized by the respective weakly coordinating anion was isolated (ArF = C6H3-3,5-(CF3)2, o-DFB = o-difluorobenzene). The phosphine and NHC-supported stannaborenium cation 6 adds ammonia at room temperature under splitting of a N-H bond and formation of Sn-NH2 and B-H bonds to give [o-C6H4(Ar*{H2N}Sn-BH{PPh2}{MeNHC})]+ (7).

2.
Angew Chem Int Ed Engl ; 62(21): e202301609, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36867365

RESUMO

The solid-state structure of decamethylsilicocene Cp*2 Si with a bent and a linear molecule in the same unit cell was so far considered an exception in relation to the structures of its all-bent heavier analogues Cp*2 E with E=Ge, Sn, Pb. Here, we present the solution to this conundrum by reporting a low-temperature phase, where all three symmetrically independent molecules are present in a bent formation. This reversible enantiotropic phase transition occurs in the temperature range between 80 K and 130 K and provides a rationale for the unexpected linear molecule based in entropy beyond hand-waving explanations such as electronic reasons or packing effects.

3.
Angew Chem Int Ed Engl ; 62(35): e202305951, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37395167

RESUMO

Tetrylidynes [TbbSn≡Co(PMe3 )3 ] (1 a) and [TbbPb≡Co(PMe3 )3 ] (2) (Tbb=2,6-[CH(SiMe3 )2 ]2 -4-(t-Bu)C6 H2 ) are accessed for the first time via a substitution reaction between [Na(OEt2 )][Co(PMe3 )4 ] and [Li(thf)2 ][TbbEBr2 ] (E=Sn, Pb). Following an alternative procedure the stannylidyne [Ar*Sn≡Co(PMe3 )3 ] (1 b) was synthesized by hydrogen atom abstraction using AIBN from the paramagnetic hydride complex [Ar*SnH=Co(PMe3 )3 ] (4) (AIBN=azobis(isobutyronitrile)). The stannylidyne 1 a adds two equivalents of water to yield the dihydroxide [TbbSn(OH)2 CoH2 (PMe3 )3 ] (5). In reaction of the stannylidyne 1 a with CO2 a product of a redox reaction [TbbSn(CO3 )Co(CO)(PMe3 )3 ] (6) was isolated. Protonation of the tetrylidynes occurs at the cobalt atom to give the metalla-stanna vinyl cation [TbbSn=CoH(PMe3 )3 ][BArF 4 ] (7 a) [ArF =C6 H3 -3,5-(CF3 )2 ]. The analogous germanium and tin cations [Ar*E=CoH(PMe3 )3 ][BArF 4 ] (E=Ge 9, Sn 7 b) (Ar*=C6 H3 (2,6-Trip)2 , Trip=2,4,6-C6 H2 iPr3 ) were also obtained by oxidation of the paramagnetic complexes [Ar*EH=Co(PMe3 )3 ] (E=Ge 3, Sn 4), which were synthesized by substitution of a PMe3 ligand of [Co(PMe3 )4 ] by a hydridoylene (Ar*EH) unit.

4.
Angew Chem Int Ed Engl ; 61(10): e202115026, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34905651

RESUMO

The reaction of potassium metal with sulfurtriimide S(Nt Bu)3 (II) gives the long elusive deep blue cage radical [K3 {(Nt Bu)3 S}2 ]. (1_K) that crystallizes at -35 °C from toluene solution. The subsequent physical characterization via X-ray structure analysis, UV/Vis-, and EPR spectroscopy from solution reveals the existence of one unpaired electron delocalized within the whole cage, i.e. coupling with the six nitrogen atoms, as well as the three potassium atoms caped by the two SN3 ligands. The present X-ray structure analysis further supports previous assumptions made on the parent compound 1_Li obtained from [Li4 {(Nt Bu)3 S}2 ] (I) and finally elucidates the structural arrangement of the SN3 caps and alkali metals in such radical cage species.

5.
Inorg Chem ; 60(13): 9268-9272, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34165290

RESUMO

A phosphine-stabilized germasilenylidene is synthesized following the pathway of SiCl4 oxidative addition at a germylene-phosphine Lewis pair. Low-temperature reduction using {(MesNacnac)Mg}2 resulted in a chlorosilylene intermediate and finally a molecule exhibiting a Ge═Si: motif. Inside the chelating phosphine-germylene, a low-valent silicon atom is stabilized and was transferred to diazabutadiene to give N-heterocyclic silylenes. Because of the high reactivity of the phosphine-stabilized germasilenylidene, a reaction of two Ge═Si: units was found to yield a Si2Ge2-ring molecule exhibiting a germasilene substituted with a silylene.

6.
Angew Chem Int Ed Engl ; 60(36): 20055-20060, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196471

RESUMO

Structurally authenticated free B-alkyl boroles are presented and electronic implications of alkyl substitution were assessed. Deprotonation of a boron-bound exocyclic methyl group in a B-methyl borole yields the first 5-boratafulvene anion-an isomer to boratabenzene. Boratafulvene was structurally characterized and its electronic structure probed by DFT calculations. The pKa value of the exocyclic B-CH3 in a set of boroles was computationally approximated and confirmed a pronounced acidic character caused by the boron atom embedded in an anti-aromatic moiety. The non-aromatic boratafulvene reacts as a C-centered nucleophile with the mild electrophile Me3 SnCl to give a stannylmethyl borole, regenerating the anti-aromaticity. As nucleophilic synthons for boroles, boratafulvenes thus open an entirely new avenue for synthetic strategies toward this highly reactive class of heterocycles. Boratafulvene reacts as a methylene transfer reagent in a bora-Wittig-type reaction generating a borole oxide.

7.
Angew Chem Int Ed Engl ; 60(11): 5882-5889, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33438371

RESUMO

Tetrylidynes [(Me3 P)2 (Ph3 P)Rh≡SnAr*] (10) and [(Me3 P)2 (Ph3 P)Rh≡PbAr*] (11) are accessed for the first time via dehydrogenation of dihydrides [(Ph3 P)2 RhH2 SnAr*] (3) and [(Ph3 P)2 RhH2 PbAr*] (7) (Ar*=2,6-Trip2 C6 H3 , Trip=2,4,6-triisopropylphenyl), respectively. Tin dihydride 3 was either synthesized in reaction of the dihydridostannate [Ar*SnH2 ]- with [(Ph3 P)3 RhCl] or via reaction between hydrides [(Ph3 P)3 RhH] and 1 / 2 [(Ar*SnH)2 ]. Homologous lead hydride [(Ph3 P)2 RhH2 PbAr*] (7) was synthesized analogously from [(Ph3 P)3 RhH] and 1 / 2 [(Ar*PbH)2 ]. Abstraction of hydrogen from 3 and 7 supported by styrene and trimethylphosphine addition yields tetrylidynes 10 and 11. Stannylidyne 10 was also characterized by 119 Sn Mössbauer spectroscopy. Hydrogenation of the triple bonds at room temperature with excess H2 gives the cis-dihydride [(Me3 P)2 (Ph3 P)RhH2 PbAr*] (12) and the tetrahydride [(Me3 P)2 (Ph3 P)RhH2 SnH2 Ar*] (14). Complex 14 eliminates spontaneously one equivalent of hydrogen at room temperature to give the dihydride [(Me3 P)2 (Ph3 P)RhH2 SnAr*] (13). Hydrogen addition and elimination at stannylene tin between complexes 13 and 14 is a reversible reaction at room temperature.

8.
J Am Chem Soc ; 142(51): 21304-21309, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33315393

RESUMO

Metathesis reaction of a dilithio borole dianion, a cyclic π-ligand isoelectronic to ubiquitous cyclopentadienyls, with two equivalents of "silicocenium" cation [Cp*Si]+ as a source of low-valent Si(II), cleanly gives a borole half-sandwich π-complex of Si(II) and silicocene. The resulting half-sandwich complex is a neutral isoelectronic analogue to the iconic silicocenium cation and features the rare structural motif of an apical silicon(II) atom with an energetically high lying lone pair of electrons that is shown to be accessible for coordination chemistry toward tungsten carbonyl. Protonation at the Si(II) atom with [H(OEt2)2][Al{OC(CF3)3}4] induces formal oxidation, and the compound rearranges to incorporate the Si atom into the carbocyclic base to give an unprecedented cationic 5-sila-6-borabicyclo[2.1.1]hex-2-ene. This rearrangement is accompanied by drastic changes in the 11B and 29Si NMR chemical shifts.

9.
Chemistry ; 26(51): 11684-11689, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32343437

RESUMO

This work describes the synthesis and characterization of a highly reactive cationic borole. Halide abstraction with Li{Al[OC(CF3 )3 ]4 } from the NHC-chloroborole adduct yields the first stable NHC-supported 1-(Me NHC)-2,5-(SiMe3 )2 -3,4-(Ph*)2 -borole cation. Electronically, it features both a five-membered cyclic conjugated 4 π-electron system and a cationic charge and thus resembles the yet elusive cyclopentadienyl cation. The borole cation was characterized crystallographically, spectroscopically (NMR, UV/Vis), by cyclovoltammetry, microanalysis and mass-spectrometry and its electronic structure was probed computationally. The cation reacts with tolane and reversibly binds carbon monoxide. Direct comparison with the structurally related, yet neutral, 1-mesityl borole reveals strong Lewis acidity, reduced HOMO-LUMO gaps, and increased anti-aromatic character.

10.
Chemistry ; 26(1): 306-315, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31660651

RESUMO

The synthesis of a boryl-substituted germanium(II) cation, [Ge{B(NDippCH)2 }(IPrMe)]+ , (Dipp=2,6-diisopropylphenyl) featuring a supporting N-heterocyclic carbene (NHC) donor, has been explored through chloride abstraction from the corresponding (boryl)(NHC)GeCl precursor. Crystallographic studies in the solid state and UV/Vis spectra in fluorobenzene solution show that this species dimerizes under such conditions to give [(IPrMe){(HCNDipp)2 B}Ge=Ge{B(NDippCH)2 }(IPrMe)]2+ (IPrMe = 1,3-diisopropyl-4,5-dimethylimidazolin-2-ylidene), which can be viewed as an imidazolium-functionalized digermene. The dimer is cleaved in the presence of donor solvents such as [D8 ]thf or [D5 ]pyridine, to give monomeric adducts of the type [Ge{B(NDippCH)2 }(IPrMe)(L)]+ . In the case of the thf adduct, the additional donor is shown to be sufficiently labile that it can act as a convenient in situ source of the monomeric complex [Ge{B(NDippCH)2 }(IPrMe)]+ for oxidative bond-activation chemistry. Thus, [Ge{B(NDippCH)2 }(IPrMe)(thf)]+ reacts with silanes and dihydrogen, leading to the formation of GeIV products, whereas the cleavage of the N-H bond in ammonia ultimately yields products containing C-H and B-N bonds. The facile reactivity observed in E-H bond activation is in line with the very small calculated HOMO-LUMO gap (132 kJ mol-1 ).

11.
Angew Chem Int Ed Engl ; 59(8): 3151-3155, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31804742

RESUMO

Phosphine-stabilized germaborenes featuring an unprecedented Ge=B double bond with short B⋅⋅⋅Ge contacts of 1.886(2) (4) and 1.895(3) Š(5) were synthesized starting from an intramolecular germylene-phosphine Lewis pair (1). After oxidative addition of boron trihalides BX3 (X=Cl, Br), the addition products were reduced with magnesium and catalytic amounts of anthracene to give the borylene derivatives in yields of 78 % (4) and 57 % (5). These halide-substituted germaborenes were characterized by single-crystal structure analysis, and the electronic structures were studied by quantum-chemical calculations. According to an NBO NRT analysis, the dominating Lewis structure contains a Ge=B double bond. The germaborenes undergo a reversible, photochemically initiated [2+2] cycloaddition with the phenyl moiety of a terphenyl substituent at room temperature, forming a complex heterocyclic structure with GeIV in a strongly distorted coordination environment.

12.
Chemistry ; 25(26): 6628-6637, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30861220

RESUMO

Establishing access to a bulky tetraaryl dilithiobutadiene (Ph*C)4 Li2 (Ph*=3,5-tBu2 (C6 H3 )) allowed for the synthesis of five-membered heterocycles with incorporated main-group elements. Along with an amino borole, a set of substituted pentaaryl boroles (Ph*C)4 BAr has been synthesized. The examination of their absorption spectra and computational studies by means of DFT granted insight into the influence of peripheral substituents on the electronic features of the parent pentaphenyl borole (PhC)4 BPh. Introduction of the more electron-rich Ph* residue at the carbon atoms increases the HOMO energy, redshifting the visible π/π*-absorption bands compared with the parent pentaphenyl borole. The influence on the frontier orbitals of three different boron-bound aryls with electronically modulating substituents in the remote 3,5-positions Ar=3,5-R2 -C6 H3 (R=Me, H, CF3 ) was studied. The substituents were found to increase (+I effect, Me) or decrease (-I effect, CF3 ) the LUMO energy, thus directly affecting the visible absorption spectra. This represents the first study on HOMO-LUMO-gap adjustments by a combined push-pull approach of a substituted pentaphenylborole.

13.
Chemistry ; 25(17): 4426-4434, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30706972

RESUMO

Bulkily substituted organodihydrogermylium and -stannylium cations [Ar*EH2 ]+ (E=Ge, Sn; Ar*=2,6-Trip2 C6 H3 , Trip=2,4,6-triisopropylphenyl) were characterized as salts of the weakly coordinating perfluorinated alkoxyaluminate anion [Al{OC(CF3 )3 }4 ]- . At room temperature, the stannylium cation liberates hydrogen to generate the low valent organotin cation [Ar*Sn]+ . In contrast, the dihydrogermylium cation transfers the hydrogen atoms to an aryl moiety of the terphenyl ligand and oxidatively adds either hydrogen under an atmosphere of hydrogen or a sp2 CH unit of the 1,2-difluorobenzene solvent.

14.
Chemistry ; 25(70): 16081-16087, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31535431

RESUMO

Organodihydridoelement anions of germanium and tin were reacted with metallocene dichlorides of Group 4 metals Ti, Zr and Hf. The germate anion [Ar*GeH2 ]- reacts with hafnocene dichloride under formation of the substitution product [Cp2 Hf(GeH2 Ar*)2 ]. Reaction of the organodihydridostannate with metallocene dichlorides affords the reduction products [Cp2 M(SnHAr*)2 ] (M=Ti, Zr, Hf). Abstraction of a hydride substituent from the titanium bis(hydridoorganostannylene) complex results in formation of cation [Cp2 M(SnAr*)(SnHAr*)]+ exhibiting a short Ti-Sn interaction. (Ar*=2,6-Trip2 C6 H3 , Trip=2,4,6-triisopropylphenyl).

15.
Angew Chem Int Ed Engl ; 58(42): 15051-15056, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31390132

RESUMO

The pentaaryl borole (Ph*C)4 BXylF [Ph*=3,5-tBu2 (C6 H3 ); XylF =3,5-(CF3 )2 (C6 H3 )] reacts with low-valent Group 13 precursors AlCp* and GaCp* by two divergent routes. In the case of [AlCp*]4 , the borole reacts as an oxidising agent and accepts two electrons. Structural, spectroscopic, and computational analysis of the resulting unprecedented neutral η5 -Cp*,η5 -[(Ph*C)4 BXylF ] complex of AlIII revealed a strong, ionic bonding interaction. The formation of the heteroleptic borole-cyclopentadienyl "aluminocene" leads to significant changes in the 13 C NMR chemical shifts within the borole unit. In the case of the less-reductive GaCp*, borole (Ph*C)4 BXylF reacts as a Lewis acid to form a dynamic adduct with a dative 2-center-2-electron Ga-B bond. The Lewis adduct was also studied structurally, spectroscopically, and computationally.

16.
J Am Chem Soc ; 139(19): 6542-6545, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28441022

RESUMO

Although hydrides of the group 14 elements are well-known as versatile starting materials in many chemical transformations, a hydride of lead in oxidation state II is so far unknown. In this work, we finally complete the jigsaw puzzle by reporting the isolation of the first low valent organolead hydride. The thermolabile dimeric organolead hydride was synthesized at low temperature and features a hydride 1H NMR signal (in solution 35.61 ppm; in the solid state 31.1 ppm) at the lowest field observed so far for a diamagnetic compound in agreement with quantum chemical predictions.

17.
Inorg Chem ; 56(1): 548-560, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27977148

RESUMO

The reaction of MeNHC (MeNHC = 1,3,4,5-tetramethylimidazolylidene, where NHC = N-heterocyclic carbene) adducts to organotin(II) hydrides Ar*SnH and Ar'SnH [Ar* = 2,6-Trip2C6H3, where Trip = 2,4,6-triisopropylphenyl; Ar' = 2,6-Mes2C6H3, where Mes = 2,4,6-trimethylphenyl)] with Lewis acids such as B(C6F5)3 or [CPh3]+ allows the abstraction of hydride and thus the generation of cationic, dicoordinate bis(σ-C)-substituted stannylenes [ArSn(NHC)]+. The supposedly dicoordinate constitution of this cationic stannylene was investigated by NMR spectroscopy and further supported by density functional theory computations. For Ar'SnH(MeNHC), the generated cation was found to be inadequately sterically encumbered, allowing the formation of an adduct, [Ar'(NHC)Sn-Sn(H)(NHC)Ar']+, which can be described as the protonated bis(NHC) adduct to the formal 1,2-distannyne.

18.
Angew Chem Int Ed Engl ; 56(8): 2198-2202, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28097796

RESUMO

A bulky substituted stannane Ar*SnH3 (Ar*=2,6-(2',4',6'-triisopropylphenyl)phenyl) was treated with the well-known frustrated Lewis pair (FLP) PtBu3 /B(C6 F5 )3 in varying stoichiometries. To some degree, hydride abstraction and adduct formation is observed, leading to [Ar*SnH2 (PtBu3 )]+ which is rather unreactive toward further dehydrogenation. In a competing process, the FLP proved to be capable of completely striping-off hydrogen and hydrides to generate the first cationic phosphonio-stannylene [Ar*Sn(PtBu3 )]+ . This behavior provides insight into the activation/abstraction mechanism processes involved in these Group 14 hydride derivatives.

19.
Angew Chem Int Ed Engl ; 56(1): 333-337, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27910186

RESUMO

Intramolecular germylene, stannylene, and plumbylene Lewis pairs were reacted with hexanal and yielded the cyclic addition products only with the germanium and tin reagents. In further reactivity studies, the hydroboration of aldehydes and ketones catalyzed by intramolecular germylene, stannylene, and plumbylene Lewis pairs was studied. In the case of the cyclic germylene Lewis pair, the product of the oxidative addition of pinacolborane at the germylene moiety was observed. According to stoichiometric as well as catalytic experiments, the intramolecular germylene Lewis pair acts as a catalyst in the hydroboration of aldehydes and ketones. The homologous stannylene Lewis pair forms a reactive tin hydride during the catalysis, which can also act as a catalyst in this transformation.

20.
Chemistry ; 22(22): 7554-66, 2016 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-27113089

RESUMO

Hydrogen can be selectively removed from organotin trihydrides to generate the corresponding organohydrostannylene intermediates. Depending on the size of the substituent and the mode of generation, the intermediates undergo further reactions. Herein, we report on the formation of a variety of organotin hydrides with tin in the oxidation states Sn(II) , Sn(I) -Sn(III) and Sn(III) -Sn(III) , all accessed by the controlled removal of hydrogen from the tetravalent Ar'Sn(IV) trihydride (Ar'=2,6-dimesitylphenyl, mesityl=2,4,6-trimethylphenyl).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa