Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 131(2): 719-727, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33434397

RESUMO

AIM: Chemically disparate toxic organic and/or inorganic molecules produced by anthropogenic activities often hinder the bioremediation process. This research was conducted to understand the capacity of Streptomyces sp. MC1 to remove chemically disparate toxics such as Cr(VI) or phenanthrene. METHODS AND RESULTS: Genomic, metabolic modeling and proteomic approaches were used in this study. Our results demonstrated that Streptomyces sp. MC1 has the genetic determinants to remove Cr(VI) or degrade phenanthrene. Proteomics showed that these genetic determinants were expressed. Metabolic versatility of the strain was confirmed by two metabolic models in complex and minimal media. Interestingly, our results also suggested a connection between the degradation of phenanthrene and synthesis of specialized metabolites. CONCLUSIONS: Streptomyces sp. MC1 has the genetic and physiological potential to remove Cr(VI) or degrade phenanthrene SIGNIFICANCE AND IMPACT OF STUDY: The probability of a microorganism to survive in the presence of different contaminants depends on its genetic potential and the ability to express it. The genetic and proteomic profiles obtained for Streptomyces sp. MC1 can be recommended as model and predict if other Streptomyces strains can be used in bioremediation processes. Our work also hypothesized that intermediates of the phenanthrene degradation serve as precursors for the specialized metabolism.


Assuntos
Cromo/metabolismo , Fenantrenos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Biodegradação Ambiental , Genômica , Proteômica
2.
Crit Rev Biotechnol ; 38(5): 719-728, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29124958

RESUMO

Actinobacteria are well-known degraders of toxic materials that have the ability to tolerate and remove organochloride pesticides; thus, they are used for bioremediation. The biodegradation of organochlorines by actinobacteria has been demonstrated in pure and mixed cultures with the concomitant production of metabolic intermediates including γ-pentachlorocyclohexene (γ-PCCH); 1,3,4,6-tetrachloro-1,4-cyclohexadiene (1,4-TCDN); 1,2-dichlorobenzene (1,2-DCB), 1,3-dichlorobenzene (1,3-DCB), or 1,4-dichlorobenzene (1,4-DCB); 1,2,3-trichlorobenzene (1,2,3-TCB), 1,2,4-trichlorobenzene (1,2,4-TCB), or 1,3,5-trichlorobenzene (1,3,5-TCB); 1,3-DCB; and 1,2-DCB. Chromatography coupled to mass spectrometric detection, especially GC-MS, is typically used to determine HCH-isomer metabolites. The important enzymes involved in HCH isomer degradation metabolic pathways include hexachlorocyclohexane dehydrochlorinase (LinA), haloalkane dehalogenase (LinB), and alcohol dehydrogenase (LinC). The metabolic versatility of these enzymes is known. Advances have been made in the identification of actinobacterial haloalkane dehydrogenase, which is encoded by linB. This knowledge will permit future improvements in biodegradation processes using Actinobacteria. The enzymatic and genetic characterizations of the molecular mechanisms involved in these processes have not been fully elucidated, necessitating further studies. New advances in this area suggest promising results. The scope of this paper encompasses the following: (i) the aerobic degradation pathways of hexachlorocyclohexane (HCH) isomers; (ii) the important genes and enzymes involved in the metabolic pathways of HCH isomer degradation; and (iii) the identification and quantification of intermediate metabolites through gas chromatography coupled to mass spectrometry (GC-MS).


Assuntos
Biodegradação Ambiental , Hexaclorocicloexano , Streptomyces , Biotecnologia , Hexaclorocicloexano/química , Hexaclorocicloexano/isolamento & purificação , Hexaclorocicloexano/metabolismo , Isomerismo , Streptomyces/química , Streptomyces/metabolismo , Streptomyces/fisiologia
3.
World J Microbiol Biotechnol ; 32(5): 81, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27038951

RESUMO

The organochlorine insecticide γ-hexachlorocyclohexane (γ-HCH, lindane) and its non-insecticidal α- and ß-isomers continue to pose serious environmental and health concerns, although their use has been restricted or completely banned for decades. In this study we report the first evidence of the growth ability of a Streptomyces strain in a mineral salt medium containing high doses of α- and ß-HCH (16.6 mg l(-1)) as a carbon source. Degradation of HCH isomers by Streptomyces sp. M7 was investigated after 1, 4, and 7 days of incubation, determining chloride ion release, and residues in the supernatants by GC with µECD detection. The results show that both the α- and ß-HCH isomers were effectively metabolized by Streptomyces sp. M7, with 80 and 78 % degradation respectively, after 7 days of incubation. Moreover, pentachlorocyclohexenes and tetrachlorocyclohexenes were detected as metabolites. In addition, the formation of possible persistent compounds such as chlorobenzenes and chlorophenols were studied by GC-MS, while no phenolic compounds were detected. In conclusion, we have demonstrated for the first time that Streptomyces sp. M7 can degrade α- and ß-isomers individually or combined with γ-HCH and could be considered as a potential agent for bioremediation of environments contaminated by organochlorine isomers.


Assuntos
Hexaclorocicloexano/química , Hexaclorocicloexano/metabolismo , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Streptomyces/metabolismo , Anaerobiose , Biodegradação Ambiental , Inseticidas/química , Inseticidas/metabolismo , Isomerismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa