Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biochem ; 123(11): 1793-1807, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35926149

RESUMO

The dysregulated energy metabolism in white adipose tissues results in derangement of biological signaling resulting in obesity. Lack of vascularization in these white adipose tissues is one of the major reasons for dysregulated energy metabolism. Not much work has been done in this direction to understand the role of angiogenesis in white adipose tissue metabolism. In the present study, we evaluated the effect of angiogenic modulator in the metabolism of white adipocyte (WAC). Bioactive Apigenin was selected and its angiogenic ability was studied. Apigenin was shown to be highly proangiogenic hence the effect of Apigenin on de novo and trans-differentiation of WAT was studied. Apigenin showed enhanced de novo differentiation and trans-differentiation of mouse WAC into brown-like phenotype. To understand the effect of Apigenin on adipose tissue vasculature, coculture studies were conducted. Cross talk between endothelial cell and adipocytes were observed in coculture studies. Gene expression studies of cocultured cells revealed that browning of WAC occurred by triggering the expression of Vascular endothelial growth factor A. The study provides a new insight for inducing metabolic shift in WACs by modulation of angiogenesis in WAC microenvironment by the upregulation of PRDM16 cascade to trigger browning for the treatment of obesity.


Assuntos
Adipócitos Marrons , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Adipócitos Marrons/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Apigenina/farmacologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adipócitos Brancos/metabolismo , Fatores de Transcrição/genética , Obesidade/metabolismo , Proteínas de Ligação a DNA/genética
2.
Nanomedicine ; 33: 102364, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33515752

RESUMO

The current study explores development of highly vascularizable biomatrix scaffold containing rare-earth metal praseodymium oxide nanoadditives for angiogenic and soft tissue regenerative applications. The therapeutic potential of praseodymium oxide nanoparticles rendered excellent endothelial cell differentiation for inducing pro angiogenic microenvironment by eliciting VE-Cadherin expression in the biomatrix scaffold. The nanoparticles were incorporated into bio-macromolecule collagen which aided in stabilization of collagen by maintaining the structural integrity of collagen and showed less susceptibility towards protease enzymes, high cyto-compatibility and high hemo-compatibility. The scaffold provided 3-dimensional micro-environments for the proliferation of endothelial cells and fibroblast cells promoting the wound healing process in an orchestrated fashion. Biological signal modulatory property of rare earth metal is the unexplored domains that can essentially bring significant therapeutic advancement in engineering advanced biological materials. This study opens potential use of nano-scaled rare earth metals in biomaterial application for tissue regeneration by modulating the pro-angiogenesis and anti-proteolysis properties.


Assuntos
Materiais Biocompatíveis/química , Colágeno/química , Nanopartículas Metálicas/química , Óxidos/química , Praseodímio/química , Alicerces Teciduais/química , Indutores da Angiogênese/química , Adesão Celular , Diferenciação Celular , Proliferação de Células , Células Endoteliais , Fibroblastos/citologia , Humanos , Engenharia Tecidual , Cicatrização/efeitos dos fármacos
3.
ACS Appl Bio Mater ; 2(8): 3458-3472, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35030734

RESUMO

The present study describes the fabrication of collagen reinforced with praseodymium-cobaltite nanoparticles for wound healing applications. Praseodymium-cobaltite nanoparticles (PCNP) reinforced with collagen resulted in an increased thermal stability and decreased proteolytic susceptibility to collagen. Circular dichroism spectroscopy and ATR-FTIR (attenuated total reflection Fourier transform infrared) spectroscopy analyses confirm the intact structural integrity of the collagen sheets after cross-linking with praseodymium-cobaltite nanoparticles. Cross-linked collagen has shown to possess biocompatibility, less protein adsorption behavior, and hemocompatibility, which are the desirable properties of a wound dressing material. The nanoparticle cross-linked collagen sheets provided a proper matrix elasticity that promotes mesenchymal stem cell attachment and angiogenesis. Further, the scaffold promoted tube formation in endothelial cells. The enhancement of angiogenesis is considered to be brought about by the therapeutic potential of nanoparticle formulation. Praseodymium-cobaltite nanoparticle cross-linking increased the ductility of collagen sheets for the pro-angiogenic and stem cell differentiation ability. Also, the praseodymium-cobaltite cross-linked collagen sheets have been shown to induce a mild level of ROS (reactive oxygen species) generation in the DCFH-DA (2',7'-dichlorodihydrofluorescein diacetate) assay, which is beneficial for angiogenesis as well as wound healing. This study paves the way for exploring the therapeutic potential of rare-earth-based nanoparticles for tissue engineering applications as an alternative for traditional wound healing materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa