Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675621

RESUMO

Allogeneic hematopoietic cell transplantation (allo-HCT) is a highly effective, well-established treatment for patients with various hematologic malignancies and non-malignant diseases. The therapeutic benefits of allo-HCT are mediated by alloreactive T cells in donor grafts. However, there is a significant risk of graft-versus-host disease (GvHD), in which the donor T cells recognize recipient cells as foreign and attack healthy organs in addition to malignancies. We previously demonstrated that targeting JAK1/JAK2, mediators of interferon-gamma receptor (IFNGR) and IL-6 receptor signaling, in donor T cells using baricitinib and ruxolitinib results in a significant reduction in GvHD after allo-HCT. Furthermore, we showed that balanced inhibition of JAK1/JAK2 while sparing JAK3 is important for the optimal prevention of GvHD. Thus, we have generated novel JAK1/JAK2 inhibitors, termed WU derivatives, by modifying baricitinib. Our results show that WU derivatives have the potential to mitigate GvHD by upregulating regulatory T cells and immune reconstitution while reducing the frequencies of antigen-presenting cells (APCs) and CD80 expression on these APCs in our preclinical mouse model of allo-HCT. In addition, WU derivatives effectively downregulated CXCR3 and T-bet in primary murine T cells. In summary, we have generated novel JAK inhibitors that could serve as alternatives to baricitinib or ruxolitinib.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Pirazóis , Transplante Homólogo , Animais , Camundongos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Azetidinas/farmacologia , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Inibidores de Janus Quinases/farmacologia , Camundongos Endogâmicos C57BL , Purinas/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos
2.
Bioorg Med Chem ; 23(16): 5144-50, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25797165

RESUMO

Given the rise of parasite resistance to all currently used antimalarial drugs, the identification of novel chemotypes with unique mechanisms of action is of paramount importance. Since Plasmodium expresses a number of aspartic proteases necessary for its survival, we have mined antimalarial datasets for drug-like aspartic protease inhibitors. This effort led to the identification of spiropiperidine hydantoins, bearing similarity to known inhibitors of the human aspartic protease ß-secretase (BACE), as new leads for antimalarial drug discovery. Spiropiperidine hydantoins have a dynamic structure-activity relationship profile with positions identified as being tolerant of a variety of substitution patterns as well as a key piperidine N-benzyl phenol pharmacophore. Lead compounds 4e (CWHM-123) and 12k (CWHM-505) are potent antimalarials with IC50 values against Plasmodium falciparum 3D7 of 0.310 µM and 0.099 µM, respectively, and the former features equivalent potency on the chloroquine-resistant Dd2 strain. Remarkably, these compounds do not inhibit human aspartic proteases BACE, cathepsins D and E, or Plasmodium plasmepsins II and IV despite their similarity to known BACE inhibitors. Although the current leads suffer from poor metabolic stability, they do fit into a drug-like chemical property space and provide a new class of potent antimalarial agents for further study.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Hidantoínas/química , Hidantoínas/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/metabolismo , Antimaláricos/farmacocinética , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Descoberta de Drogas , Humanos , Hidantoínas/metabolismo , Hidantoínas/farmacocinética , Malária Falciparum/parasitologia , Camundongos , Microssomos Hepáticos/metabolismo , Piperidinas/química , Piperidinas/metabolismo , Piperidinas/farmacocinética , Piperidinas/farmacologia , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Ratos , Compostos de Espiro/química , Compostos de Espiro/metabolismo , Compostos de Espiro/farmacocinética , Compostos de Espiro/farmacologia
3.
Bull Environ Contam Toxicol ; 88(3): 326-32, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22218748

RESUMO

Indaziflam {N-[(1R, 2S)-2,3-dihydro-2,6-dimethyl-1H-inden-1-yl]-6-[(1RS)-1fluoroethyl]-1,3,5-triazine-2,4-diamine} is a new pre-emergence herbicide recently registered for a broad spectrum weed control in Florida citrus. Experiments were conducted to evaluate leaching of indaziflam applied at 73 and 145 g ai ha(-1) in Florida Candler soil under simulated rainfall of 5, 10, and 15 cm ha(-1). Indaziflam leached the least (12.6 ± 0.6 cm) when applied at 73 g ai ha(-1) under 5 cm ha(-1) rainfall. Indaziflam leached furthest (30.2 ± 0.9 cm) when applied at 145 g ai ha(-1) under 15 cm ha(-1) rainfall. The visual control ratings of a bio-indicator species ryegrass (Lolium multiflorum L.) was 97% at 15 cm ha(-1) rainfall when indaziflam applied at 145 g ai ha(-1) in the 26 to 30 cm horizon indicating the maximum movement and activity of indaziflam. A dose response experiment was conducted to determine the sensitivity of ryegrass to various doses of indaziflam that confirmed that application of indaziflam at 29.20 g ai ha(-1) was sufficient to prevent germination of ryegrass. There was no mortality of ryegrass plants beyond the 30 cm and the biomass of ryegrass was comparable with untreated control indicating that indaziflam did not leach beyond this distance even under 15 cm ha(-1) rainfall.


Assuntos
Herbicidas/análise , Indenos/análise , Chuva , Poluentes do Solo/análise , Triazinas/análise , Monitoramento Ambiental , Florida , Herbicidas/química , Herbicidas/metabolismo , Indenos/química , Indenos/metabolismo , Lolium/metabolismo , Modelos Químicos , Medição de Risco , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Triazinas/química , Triazinas/metabolismo
4.
mSphere ; 4(5)2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511370

RESUMO

Antibiotic resistance is a global crisis that threatens our ability to treat bacterial infections, such as tuberculosis, caused by Mycobacterium tuberculosis Of the 10 million cases of tuberculosis in 2017, approximately 19% of new cases and 43% of previously treated cases were caused by strains of M. tuberculosis resistant to at least one frontline antibiotic. There is a clear need for new therapies that target these genetically resistant strains. Here, we report the discovery of a new series of antimycobacterial compounds, 4-amino-thieno[2,3-d]pyrimidines, that potently inhibit the growth of M. tuberculosis To elucidate the mechanism by which these compounds inhibit M. tuberculosis, we selected for mutants resistant to a representative 4-amino-thieno[2,3-d]pyrimidine and sequenced these strains to identify the mutations that confer resistance. We isolated a total of 12 resistant mutants, each of which harbored a nonsynonymous mutation in the gene qcrB, which encodes a subunit of the electron transport chain (ETC) enzyme cytochrome bc1 oxidoreductase, leading us to hypothesize that 4-amino-thieno[2,3-d]pyrimidines target this enzyme complex. We found that addition of 4-amino-thieno[2,3-d]pyrimidines to M. tuberculosis cultures resulted in a decrease in ATP levels, supporting our model that these compounds inhibit the M. tuberculosis ETC. Furthermore, 4-amino-thieno[2,3-d]pyrimidines had enhanced activity against a mutant of M. tuberculosis deficient in cytochrome bd oxidase, which is a hallmark of cytochrome bc1 inhibitors. Therefore, 4-amino-thieno[2,3-d]pyrimidines represent a novel series of QcrB inhibitors that build on the growing number of chemical scaffolds that are able to inhibit the mycobacterial cytochrome bc1 complex.IMPORTANCE The global tuberculosis (TB) epidemic has been exacerbated by the rise in drug-resistant TB cases worldwide. To tackle this crisis, it is necessary to identify new vulnerable drug targets in Mycobacterium tuberculosis, the causative agent of TB, and develop compounds that can inhibit the bacterium through novel mechanisms of action. The QcrB subunit of the electron transport chain enzyme cytochrome bc1 has recently been validated to be a potential drug target. In the current work, we report the discovery of a new class of QcrB inhibitors, 4-amino-thieno[2,3-d]pyrimidines, that potently inhibit M. tuberculosis growth in vitro These compounds are chemically distinct from previously reported QcrB inhibitors, and therefore, 4-amino-thieno[2,3-d]pyrimidines represent a new scaffold that can be exploited to inhibit this drug target.


Assuntos
Antibióticos Antituberculose/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Pirimidinas/farmacologia , Antibióticos Antituberculose/química , Proteínas de Bactérias/genética , Descoberta de Drogas , Complexo III da Cadeia de Transporte de Elétrons/genética , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Pirimidinas/química
6.
J Org Chem ; 61(5): 1830-1841, 1996 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-11667057

RESUMO

Three series of compounds based on the cyclohexene framework have been epoxidized by dimethyldioxirane. A pronounced dependence of epoxide diastereoselectivity on substituent has been observed. In addition there is a solvent influence on this stereoselectivity. The results have been explained by invoking steric, H-bonding, and dipole-dipole influences on the epoxide stereochemistry.

7.
J Org Chem ; 61(22): 7660-7661, 1996 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-11667716
8.
Bioorg Med Chem Lett ; 13(9): 1565-70, 2003 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-12699756

RESUMO

The intracellular distribution of fluorescent-labeled polyamides was examined in live cells. We showed that BODIPY-labeled polyamides accumulate in acidic vesicles, mainly lysosomes, in the cytoplasm of HCT116 colon cancer cells and human rheumatoid synovial fibroblasts (RSF). Verapamil blocked vesicular accumulation and led to nuclear accumulation of the BODIPY-labeled polyamide in RSFs. We infer that the basic amine group commonly found at the end of synthetic polyamide chains is responsible for their accumulation in cytoplasmic vesicles in mammalian cells. Modifying the charge on a polyamide by replacing the BODIPY moiety with a fluorescein moiety on the amine tail allowed the polyamide to localize in the nucleus of the cell and bypass the cytoplasmic vesicles in HCT116 cells.


Assuntos
Compostos de Boro , Corantes Fluorescentes , Nylons/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Fluorescência , Humanos , Espaço Intracelular/metabolismo , Verapamil/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa