Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Ecol ; 32(2): 504-517, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36318600

RESUMO

Anthropogenic changes to land use drive concomitant changes in biodiversity, including that of the soil microbiota. However, it is not clear how increasing intensity of human disturbance is reflected in the soil microbial communities. To address this issue, we used amplicon sequencing to quantify the microbiota (bacteria and fungi) in the soil of forests (n = 312) experiencing four different land uses, national parks (set aside for nature conservation), managed (for forestry purposes), suburban (on the border of an urban area) and urban (fully within a town or city), which broadly represent a gradient of anthropogenic disturbance. Alpha diversity of bacteria and fungi increased with increasing levels of anthropogenic disturbance, and was thus highest in urban forest soils and lowest in the national parks. The forest soil microbial communities were structured according to the level of anthropogenic disturbance, with a clear urban signature evident in both bacteria and fungi. Despite notable differences in community composition, there was little change in the predicted functional traits of urban bacteria. By contrast, urban soils exhibited a marked loss of ectomycorrhizal fungi. Soil pH was positively correlated with the level of disturbance, and thus was the strongest predictor of variation in alpha and beta diversity of forest soil communities, indicating a role of soil alkalinity in structuring urban soil microbial communities. Hence, our study shows how the properties of urban forest soils promote an increase in microbial diversity and a change in forest soil microbiota composition.


Assuntos
Micorrizas , Solo , Humanos , Solo/química , Florestas , Fungos/genética , Bactérias/genética , Biodiversidade , Microbiologia do Solo
2.
Front Zool ; 20(1): 27, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37587452

RESUMO

BACKGROUND: Despite centuries of research, debate remains on the scaling of metabolic rate to mass especially for intraspecific cases. The high variation of body mass within brown bears presents a unique opportunity to study the intraspecific effects of body mass on physiological variables. The amplitude of metabolic rate reduction in hibernators is dependent on body mass of the species. Small hibernators have high metabolic rates when euthermic but experience a drastic decrease in body temperature during torpor, which is necessary to reach a very low metabolic rate. Conversely, large hibernators, such as the brown bear (Ursus arctos), show a moderate decrease in temperature during hibernation, thought to be related to the bear's large size. We studied body mass, abdominal body temperature, heart rate, and accelerometer-derived activity from 63 free-ranging brown bears (1-15 years old, 15-233 kg). We tested for relationships between body mass and body temperature, heart rate, and hibernation duration. RESULTS: The smallest individuals maintained lower body temperatures during hibernation, hibernated longer, and ended hibernation later than large bears. Unlike body temperature, winter heart rates were not associated with body mass. In summer, the opposite pattern was found, with smaller individuals having higher body temperature and daytime heart rates. Body mass was associated with body temperature in the winter hypometabolic state, even in a large hibernating mammal. Smaller bears, which are known to have higher thermal conductance, reached lower body temperatures during hibernation. During summer, smaller bears had higher body temperatures and daytime heart rates, a phenomenon not previously documented within a single mammalian species. CONCLUSION: We conclude that the smallest bears hibernated more deeply and longer than large bears, likely from a combined effect of basic thermodynamics, the higher need for energy savings, and a lower cost of warming up a smaller body.

3.
Oecologia ; 201(4): 1123-1136, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37017733

RESUMO

Climate change represents a growing ecological challenge. The (sub) arctic and boreal regions of the world experience the most rapid warming, presenting an excellent model system for studying how climate change affects mammals. Moose (Alces alces) are a particularly relevant model species with their circumpolar range. Population declines across the southern edge of this range are linked to rising temperatures. Using a long-term dataset (1988-1997, 2017-2019), we examine the relative strength of direct (thermoregulatory costs) and indirect (food quality) pathways linking temperature, precipitation, and the quality of two important food items (birch and fireweed) to variation in moose calf mass in northern Sweden. The direct effects of temperature consistently showed stronger relationships to moose calf mass than did the indirect effects. The proportion of growing season days where the temperature exceeded a 20 °C threshold showed stronger direct negative relationships to moose calf mass than did mean temperature values. Finally, while annual forb (fireweed) quality was more strongly influenced by temperature and precipitation than were perennial (birch) leaves, this did not translate into a stronger relationship to moose calf weight. The only indirect path with supporting evidence suggested that mean growing season temperatures were positively associated with neutral detergent fiber, which was, in turn, negatively associated with calf mass. While indirect impacts of climate change deserve further investigation, it is important to recognize the large direct impacts of temperature on cold-adapted species.


Assuntos
Cervos , Animais , Estações do Ano , Temperatura , Mudança Climática , Regiões Árticas
4.
J Therm Biol ; 109: 103334, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36195402

RESUMO

Gestation and lactation have high energetic requirements. Up to three-fourths of the gestation period in moose (Alces alces) overlaps with the food-scarce period in winter. During this period, moose deal with the limited forage resources available through hypometabolism with decreased heart rate and body temperature (Tb). Body temperature is also an indicator of oestrus, pregnancy and parturition, which is well documented in several domestic species. In this study, we sought to determine if moose displayed a similar Tb pattern during pregnancy and parturition to domesticated ruminants, and if we could detect parturition by combining Tb and activity data. We studied the Tb pattern of 30 free-ranging adult female moose (≥1.5 years old), equipped with ruminal temperature loggers and GPS collars. We documented a 0.13-0.19°C higher Tb in pregnant compared to non-pregnant moose, depending on the study area with the Tb difference increasing along a south-north gradient, and a drop in Tb and in activity when parturition was imminent. Detection of parturition was highly successful when combining Tb and activity data with an accuracy of 91.5%. Our findings demonstrate that Tb responses to pregnancy and parturition in a wild capital-breeding ruminant are similar to those of domesticated ruminants.


Assuntos
Temperatura Corporal , Cervos , Animais , Cervos/fisiologia , Feminino , Parto , Gravidez , Ruminantes , Estações do Ano
5.
Biol Lett ; 16(6): 20200044, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32544379

RESUMO

In northern environments, the period of access to high-quality forage is limited, exerting strong selective pressure to optimize the timing of parturition. We analysed timing and variation in moose (Alces alces) parturition dates of 555 females at 18 study sites across 12° of latitude (56-68° N, 1350 km) in Sweden. We found evidence for a spatial match of parturition timing to vegetation onset, but no evidence that moose adjust parturition to vegetation onset in a given year. We found a breakpoint at 64° N. Despite adaptation across latitudes, temporal divergences occurred. Females below 64° N calved after vegetation onset and females above 64° N calved before. Here, parturition before vegetation onset might be a strategy to optimize forage utilization time with the very short growing season. Highly seasonal environments such as at higher latitudes may make it advantageous to adapt parturition towards long-term climatic patterns by matching the most favourable period. Given the direction of temporal divergence, our study suggests that climate change may have less of an impact on moose parturition at northern latitudes than southern latitudes.


Assuntos
Mudança Climática , Herbivoria , Animais , Feminino , Parto , Gravidez , Estações do Ano , Suécia
6.
Ecol Appl ; 27(5): 1514-1528, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28370777

RESUMO

Quantification of rates and patterns of community dynamics is central for understanding the organization and function of ecosystems. These insights may support a greater empirical understanding of ecological resilience, and the application of resilience concepts toward ecosystem management. Distinct types of dynamics in natural communities can be used to interpret and apply resilience concepts, but quantitative methods that can systematically distinguish among them are needed. We develop a quantitative method to analyze long-term records of plant community dynamics using principles of movement ecology. We analyzed dissimilarity of species composition through time with linear and nonlinear statistical models to assign community change to four classes of movement trajectories. Compositional change in each sampled plot through time was classified into four classes, stability, abrupt nonlinear change, transient reversible change, and gradual linear drift, each representing a different aspect of ecological resilience. These competing models were evaluated based on estimated coefficients, goodness of fit, and parsimony. We tested our method's accuracy and robustness through simulations, or the ability to distinguish among trajectories and classify them correctly. We simulated 16,000 trajectories of four types, of which 94-100% were correctly classified. Next, we analyzed 13 long-term vegetation records from North American grasslands (annual grasslands with warm-season and cool-season communities, shortgrass, mixedgrass, and tallgrass prairies, and sagebrush steppe), and a record of primary succession at Mt. St. Helens volcano. Collectively, we analyzed 14,647 observations from 775 plots, between 1915 and 2012. Dynamics could be reliably assigned for 705 plots (91%), and overall statistical fit was high (goodness of fit, 0.77 ± 0.15 SD). Among the perennial grasslands, stability was most common (44% of all plots), followed by gradual linear (22%), abrupt nonlinear (17%), and reversible (6%) change. Among annual grasslands, abrupt nonlinear shifts (33%) were more common in the warm-season community than in the cool-season (20%). As expected, abrupt nonlinear change was common during primary succession (51%) while reversible change was rare (3%). Generally, reversible dynamics often required 2-3 decades. Analysis of long-term community change, or trajectories, with principles of movement ecology provides a quantitative basis to compare and interpret ecological resilience within and among ecosystems.


Assuntos
Biota , Ecologia/métodos , Dispersão Vegetal , Plantas , Alberta , Modelos Biológicos , Dinâmica Populacional , Estados Unidos
7.
Environ Sci Technol ; 51(10): 5729-5736, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28414429

RESUMO

Lead poisoning of animals due to ingestion of fragments from lead-based ammunition in carcasses and offal of shot wildlife is acknowledged globally and raises great concerns about potential behavioral effects leading to increased mortality risks. Lead levels in blood were correlated with progress of the moose hunting season. Based on analyses of tracking data, we found that even sublethal lead concentrations in blood (25 ppb, wet weight), can likely negatively affect movement behavior (flight height and movement rate) of free-ranging scavenging Golden Eagles (Aquila chrysaetos). Lead levels in liver of recovered post-mortem analyzed eagles suggested that sublethal exposure increases the risk of mortality in eagles. Such adverse effects on animals are probably common worldwide and across species, where game hunting with lead-based ammunition is widespread. Our study highlights lead exposure as a considerably more serious threat to wildlife conservation than previously realized and suggests implementation of bans of lead ammunition for hunting.


Assuntos
Águias , Intoxicação por Chumbo/veterinária , Animais , Comportamento Animal , Chumbo , Dinâmica Populacional , Propilaminas , Risco
8.
Biol Lett ; 10(6)2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24942710

RESUMO

A challenge in animal ecology is to link animal movement to demography. In general, reproducing and non-reproducing animals may show different movement patterns. Dramatic changes in reproductive status, such as the loss of an offspring during the course of migration, might also affect movement. Studies linking movement speed to reproductive status require individual monitoring of life-history events and hence are rare. Here, we link movement data from 98 GPS-collared female moose (Alces alces) to field observations of reproductive status and calf survival. We show that reproductive females move more quickly during migration than non-reproductive females. Further, the loss of a calf over the course of migration triggered a decrease in speed of the female. This is in contrast to what might be expected for females no longer constrained by an accompanying offspring. The observed patterns demonstrate that females of different reproductive status may have distinct movement patterns, and that the underlying motivation to move may be altered by a change in reproductive status during migration.


Assuntos
Migração Animal/fisiologia , Locomoção/fisiologia , Motivação , Reprodução/fisiologia , Animais , Animais Lactentes , Cervos/fisiologia , Feminino , Estações do Ano , Suécia
9.
Biol Rev Camb Philos Soc ; 99(4): 1242-1260, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38437713

RESUMO

Animal migration has fascinated scientists and the public alike for centuries, yet migratory animals are facing diverse threats that could lead to their demise. The Anthropocene is characterised by the reality that humans are the dominant force on Earth, having manifold negative effects on biodiversity and ecosystem function. Considerable research focus has been given to assessing anthropogenic impacts on the numerical abundance of species/populations, whereas relatively less attention has been devoted to animal migration. However, there are clear linkages, for example, where human-driven impacts on migration behaviour can lead to population/species declines or even extinction. Here, we explore anthropogenic threats to migratory animals (in all domains - aquatic, terrestrial, and aerial) using International Union for the Conservation of Nature (IUCN) Threat Taxonomy classifications. We reveal the diverse threats (e.g. human development, disease, invasive species, climate change, exploitation, pollution) that impact migratory wildlife in varied ways spanning taxa, life stages and type of impact (e.g. from direct mortality to changes in behaviour, health, and physiology). Notably, these threats often interact in complex and unpredictable ways to the detriment of wildlife, further complicating management. Fortunately, we are beginning to identify strategies for conserving and managing migratory animals in the Anthropocene. We provide a set of strategies that, if embraced, have the potential to ensure that migratory animals, and the important ecological functions sustained by migration, persist.


Assuntos
Migração Animal , Conservação dos Recursos Naturais , Animais , Humanos , Atividades Humanas , Mudança Climática , Ecossistema , Biodiversidade
10.
Ecol Appl ; 22(7): 2007-20, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23210316

RESUMO

Understanding the causes and consequences of animal movements is of fundamental biological interest because any alteration in movement can have direct and indirect effects on ecosystem structure and function. It is also crucial for assisting spatial wildlife management under variable environmental change scenarios. Recent research has highlighted the need of quantifying individual variability in movement behavior and how it is generated by interactions between individual requirements and environmental conditions, to understand the emergence of population-level patterns. Using a multi-annual movement data set of 213 individual moose (Alces alces) across a latitudinal gradient (from 56 degrees to 67 degrees N) that spans over 1100 km of varying environmental conditions, we analyze the differences in individual and population-level movements. We tested the effect of climate, risk, and human presence in the landscape on moose movements. The variation in these factors explained the existence of multiple movements (migration, nomadism, dispersal, sedentary) among individuals and seven populations. Population differences were primarily related to latitudinal variation in snow depth and road density. Individuals showed both fixed and flexible behaviors across years, and were less likely to migrate with age in interaction with snow and roads. For the predominant movement strategy, migration, the distance, timing, and duration at all latitudes varied between years. Males traveled longer distances and began migrating later in spring than females. Our study provides strong quantitative evidence for the dynamics of animal movements in response to changes in environmental conditions along with varying risk from human influence across the landscape. For moose, given its wide distributional range, changes in the distribution and migratory behavior are expected under future warming scenarios.


Assuntos
Migração Animal , Cervos/fisiologia , Ecossistema , Animais , Demografia , Feminino , Masculino , Modelos Biológicos , Noruega , Suécia , Fatores de Tempo
11.
Vector Borne Zoonotic Dis ; 22(5): 297-299, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580214

RESUMO

Pathogens might affect behavior of infected reservoir hosts and hence their trappability, which could bias population estimates of pathogen prevalence. In this study, we used snap-trapping data on Puumala orthohantavirus (PUUV)-infected (n = 1619) and noninfected (n = 6940) bank voles (Myodes glareolus) from five vole cycles, normally representing increase, peak, and decline phase, to evaluate if infection status affected trapping success. If PUUV infection, as previously suggested, increases activity and/or mobility, we would expect a higher proportion of infected than noninfected specimens in the first trapping night. However, the proportion of PUUV-infected voles did not differ across the three trapping nights. We conclude that PUUV infection did not affect trapping success, confirming snap trapping as an appropriate trapping method for studies on PUUV prevalence and likely other orthohantaviruses.


Assuntos
Febre Hemorrágica com Síndrome Renal , Virus Puumala , Doenças dos Roedores , Animais , Arvicolinae , Febre Hemorrágica com Síndrome Renal/epidemiologia , Febre Hemorrágica com Síndrome Renal/veterinária
12.
Nat Commun ; 13(1): 7532, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477188

RESUMO

Population fluctuations are widespread across the animal kingdom, especially in the order Rodentia, which includes many globally important reservoir species for zoonotic pathogens. The implications of these fluctuations for zoonotic spillover remain poorly understood. Here, we report a global empirical analysis of data describing the linkages between habitat use, population fluctuations and zoonotic reservoir status in rodents. Our quantitative synthesis is based on data collated from papers and databases. We show that the magnitude of population fluctuations combined with species' synanthropy and degree of human exploitation together distinguish most rodent reservoirs at a global scale, a result that was consistent across all pathogen types and pathogen transmission modes. Our spatial analyses identified hotspots of high transmission risk, including regions where reservoir species dominate the rodent community. Beyond rodents, these generalities inform our understanding of how natural and anthropogenic factors interact to increase the risk of zoonotic spillover in a rapidly changing world.


Assuntos
Roedores , Humanos , Animais
13.
BMC Ecol Evol ; 22(1): 105, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038827

RESUMO

BACKGROUND: Telomere length provides a physiological proxy for accumulated stress in animals. While there is a growing consensus over how telomere dynamics and their patterns are linked to life history variation and individual experience, knowledge on the impact of exposure to different stressors at a large spatial scale on telomere length is still lacking. How exposure to different stressors at a regional scale interacts with individual differences in life history is also poorly understood. To better understand large-scale regional influences, we investigated telomere length variation in moose (Alces alces) distributed across three ecoregions. We analyzed 153 samples of 106 moose representing moose of both sexes and range of ages to measure relative telomere lengths (RTL) in white blood cells. RESULTS: We found that average RTL was significantly shorter in a northern (montane) and southern (sarmatic) ecoregion where moose experience chronic stress related to severe summer and winter temperatures as well as high anthropogenic land-use compared to the boreal region. Our study suggests that animals in the northern boreal forests, with relatively homogenous land use, are less disturbed by environmental and anthropogenic stressors. In contrast, animals in areas experiencing a higher rate of anthropogenic and environmental change experience increased stress. CONCLUSION: Although animals can often adapt to predictable stressors, our data suggest that some environmental conditions, even though predictable and ubiquitous, can generate population level differences of long-term stress. By measuring RTL in moose for the first time, we provide valuable insights towards our current understanding of telomere biology in free-ranging wildlife in human-modified ecosystems.


Assuntos
Cervos , Ecossistema , Animais , Animais Selvagens/genética , Cervos/genética , Feminino , Humanos , Masculino , Estações do Ano , Telômero/genética
14.
Ecol Evol ; 11(7): 3159-3183, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33841775

RESUMO

With accelerated land conversion and global heating at northern latitudes, it becomes crucial to understand, how life histories of animals in extreme environments adapt to these changes. Animals may either adapt by adjusting foraging behavior or through physiological responses, including adjusting their energy metabolism or both. Until now, it has been difficult to study such adaptations in free-ranging animals due to methodological constraints that prevent extensive spatiotemporal coverage of ecological and physiological data.Through a novel approach of combining DNA-metabarcoding and nuclear magnetic resonance (NMR)-based metabolomics, we aim to elucidate the links between diets and metabolism in Scandinavian moose Alces alces over three biogeographic zones using a unique dataset of 265 marked individuals.Based on 17 diet items, we identified four different classes of diet types that match browse species availability in respective ecoregions in northern Sweden. Individuals in the boreal zone consumed predominantly pine and had the least diverse diets, while individuals with highest diet diversity occurred in the coastal areas. Males exhibited lower average diet diversity than females.We identified several molecular markers indicating metabolic constraints linked to diet constraints in terms of food availability during winter. While animals consuming pine had higher lipid, phospocholine, and glycerophosphocholine concentrations in their serum than other diet types, birch- and willow/aspen-rich diets exhibit elevated concentrations of several amino acids. The individuals with highest diet diversity had increased levels of ketone bodies, indicating extensive periods of starvation for these individuals.Our results show how the adaptive capacity of moose at the eco-physiological level varies over a large eco-geographic scale and how it responds to land use pressures. In light of extensive ongoing climate and land use changes, these findings pave the way for future scenario building for animal adaptive capacity.

15.
Primates ; 61(2): 331-338, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31903513

RESUMO

Functional explanations for loud calling in nocturnal primates include territorial or sexual advertisement, maintenance of cohesiveness, and group coordination. It is generally accepted that loud calls of lesser galagos (genus Galago) are used for territorial advertisement and long-distance spacing. Field studies suggest that they are uttered at dusk and dawn, when the animals leave and reunite at their sleeping sites. However, empirical validation of these inferences is lacking. We conducted 16-night-long acoustic monitoring of a northern lesser galago (G. senegalensis) population in Senegal and quantified the occurrence of loud calls throughout the night. We hypothesized that significantly more of these calls would be emitted at dusk and dawn if they were used for territorial advertisement and long-distance spacing. This hypothesis was only partially supported, as we found an asymmetrical distribution of loud calls, which significantly increased only before and at dawn. The finding that the relatively early increase in vocal activity was not directly related to approaching and entering sleeping sites suggests that the northern lesser galagos' loud calls differ in function from reassembly calls described for other species of nocturnal primates. Furthermore, the early onset cannot be explained by changes in the intensity of sunlight, moonlight or starlight, which suggests that a different stimulus, most likely internal, elicits early-morning calling behavior in northern lesser galagos.


Assuntos
Galago/fisiologia , Vocalização Animal , Acústica , Animais , Ritmo Circadiano , Luz , Senegal
16.
PeerJ ; 8: e8424, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32025374

RESUMO

Microorganisms are essential constituents of ecosystems. To improve our understanding of how various factors shape microbial diversity and composition in nature it is important to study how microorganisms vary in space and time. Factors shaping microbial communities in ground level air have been surveyed in a limited number of studies, indicating that geographic location, season and local climate influence the microbial communities. However, few have surveyed more than one location, at high latitude or continuously over more than a year. We surveyed the airborne microbial communities over two full consecutive years in Kiruna, in the Arctic boreal zone, and Ljungbyhed, in the Southern nemoral zone of Sweden, by using a unique collection of archived air filters. We mapped both geographic and seasonal differences in bacterial and fungal communities and evaluated environmental factors that may contribute to these differences and found that location, season and weather influence the airborne communities. Location had stronger influence on the bacterial community composition compared to season, while location and season had equal influence on the fungal community composition. However, the airborne bacterial and fungal diversity showed overall the same trend over the seasons, regardless of location, with a peak during the warmer parts of the year, except for the fungal seasonal trend in Ljungbyhed, which fluctuated more within season. Interestingly, the diversity and evenness of the airborne communities were generally lower in Ljungbyhed. In addition, both bacterial and fungal communities varied significantly within and between locations, where orders like Rhizobiales, Rhodospirillales and Agaricales dominated in Kiruna, whereas Bacillales, Clostridiales and Sordariales dominated in Ljungbyhed. These differences are a likely reflection of the landscape surrounding the sampling sites where the landscape in Ljungbyhed is more homogenous and predominantly characterized by artificial and agricultural surroundings. Our results further indicate that local landscape, as well as seasonal variation, shapes microbial communities in air.

17.
Conserv Physiol ; 8(1): coaa122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33408867

RESUMO

Optimal management of hunted species requires an understanding of the impacts of hunting on both individual animal and population levels. Recent technological advancements in biologging enable us to obtain increasingly detailed information from free-ranging animals, covering longer periods of time, and providing the data needed to assess such impacts. In Sweden, more than 80 000 moose are harvested annually, mostly hunted with the use of baying dogs. The effects of this hunting method on animal welfare and stress are understudied. Here, we evaluated 6 real and 17 experimental hunting approaches with baying dogs [wearing global positioning system (GPS) collars] on 8 adult female moose equipped with ruminal temperature loggers, subcutaneous heart rate (HR) loggers and GPS collars with accelerometers. The obtained data were used to analyse the behavioural and physiological responses of moose to hunting with dogs. Successful experimental approaches (moose and dog were within 240 m for >10 min) resulted in higher maximum body temperature (Tb, 0.88°C higher) and a mean increase in HR of 24 bpm in moose at the day of the approach compared to the day after. The moose rested on average >90 min longer the day after the approach compared to the day of the approach. The moose travelled on average 4.2 km longer and had a 1.3 m/s higher maximum speed the day of the approach compared to the day after. Our results demonstrate that hunting with dogs increase moose energy expenditure and resting time (and consequently decrease time available for foraging) on an individual level. This could possibly affect body condition and reproduction rates if the hunting disturbances occur frequently.

18.
Evolution ; 74(10): 2377-2391, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32885859

RESUMO

Spectacular long-distance migration has evolved repeatedly in animals enabling exploration of resources separated in time and space. In birds, these patterns are largely driven by seasonality, cost of migration, and asymmetries in competition leading most often to leapfrog migration, where northern breeding populations winter furthest to the south. Here, we show that the highly aerial common swift Apus apus, spending the nonbreeding period on the wing, instead exhibits a rarely found chain migration pattern, where the most southern breeding populations in Europe migrate to wintering areas furthest to the south in Africa, whereas the northern populations winter to the north. The swifts concentrated in three major areas in sub-Saharan Africa during the nonbreeding period, with substantial overlap of nearby breeding populations. We found that the southern breeding swifts were larger, raised more young, and arrived to the wintering areas with higher seasonal variation in greenness (Normalized Difference Vegetation Index) earlier than the northern breeding swifts. This unusual chain migration pattern in common swifts is largely driven by differential annual timing and we suggest it evolves by prior occupancy and dominance by size in the breeding quarters and by prior occupancy combined with diffuse competition in the winter.


Assuntos
Migração Animal , Evolução Biológica , Aves/genética , África , Animais , Tamanho Corporal , Tamanho da Ninhada , Europa (Continente)
19.
Front Physiol ; 10: 389, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031634

RESUMO

Prior to winter, heterotherms retain polyunsaturated fatty acids ("PUFA"), resulting in enhanced energy savings during hibernation, through deeper and longer torpor bouts. Hibernating bears exhibit a less dramatic reduction (2-5°C) in body temperature, but lower their metabolism to a degree close to that of small hibernators. We determined the lipid composition, via lipidomics, in skeletal muscle and white adipose tissues ("WAT"), to assess lipid retention, and in blood plasma, to reflect lipid trafficking, of winter hibernating and summer active wild Scandinavian brown bears (Ursus arctos). We found that the proportion of monounsaturated fatty acids in muscle of bears was significantly higher during winter. During hibernation, omega-3 PUFAs were retained in WAT and short-length fatty acids were released into the plasma. The analysis of individual lipid moieties indicated significant changes of specific fatty acids, which are in line with the observed seasonal shift in the major lipid categories and can be involved in specific regulations of metabolisms. These results strongly suggest that the shift in lipid composition is well conserved among hibernators, independent of body mass and of the animals' body temperature.

20.
Sci Adv ; 4(1): eaao2314, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29376120

RESUMO

In 2015, more than 200,000 saiga antelopes died in 3 weeks in central Kazakhstan. The proximate cause of death is confirmed as hemorrhagic septicemia caused by the bacterium Pasteurella multocida type B, based on multiple strands of evidence. Statistical modeling suggests that there was unusually high relative humidity and temperature in the days leading up to the mortality event; temperature and humidity anomalies were also observed in two previous similar events in the same region. The modeled influence of environmental covariates is consistent with known drivers of hemorrhagic septicemia. Given the saiga population's vulnerability to mass mortality and the likely exacerbation of climate-related and environmental stressors in the future, management of risks to population viability such as poaching and viral livestock disease is urgently needed, as well as robust ongoing veterinary surveillance. A multidisciplinary approach is needed to research mass mortality events under rapid environmental change.


Assuntos
Antílopes/fisiologia , Extinção Biológica , Pesquisa Interdisciplinar , Animais , Antílopes/microbiologia , Cazaquistão , Pasteurella , Análise de Componente Principal , Probabilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa