Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Mol Carcinog ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801393

RESUMO

The anticancer potential and associated mechanisms of flavonoid fisetin are yet to be fully investigated on human head and neck squamous cell carcinoma (HNSCC). In the present study, fisetin (25-75 µM for 24-48 h) dose-dependently inhibited growth and induced death in HNSCC Cal33 and UM-SCC-22B cells, without showing any death in normal cells. Fisetin (25-50 µM) induced G2/M phase arrest via decrease in Cdc25C, CDK1, cyclin B1 expression, and an increase in p53(S15). A concentration-dependent increase in fisetin-induced DNA damage and apoptosis in HNSCC cells was authenticated by comet assay, gamma-H2A.X(S139) phosphorylation, and marked cleavage of PARP protein. Interestingly, fisetin-induced cell death occurred independently of p53 and reactive oxygen species production. The activation of JNK and inhibition of PI3K/Akt, ERK1/2, EGFR, and STAT-3 signaling were identified. Further, fisetin-induced apoptosis was mediated, in part, via p21Cip1 and p27Kip1 cleavage by caspase, which was reversed by z-VAD-FMK, a pan-caspase inhibitor. Subsequently, fisetin was also found to induce autophagy; nevertheless, autophagy attenuation exaggerated apoptosis. Oral fisetin (50 mg/kg body weight) treatment to establish Cal33 xenograft in mice for 19 days showed 73% inhibition in tumor volume (p < 0.01) along with a decrease in Ki67-positive cells and an increase in cleaved caspase-3 level in tumors. Consistent with the effect of 50 µM fisetin in vitro, the protein levels of p21Cip1 and P27Kip1 were also decreased by fisetin in tumors. Together, these findings showed strong anticancer efficacy of fisetin against HNSCC with downregulation of EGFR-Akt/ERK1/2-STAT-3 pathway and activation of JNK/c-Jun, caspases and caspase-mediated cleavage of p21Cip1 and p27Kip1.

2.
Mol Carcinog ; 63(2): 301-313, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921547

RESUMO

Bone is the most favored site for metastasis for each major subtype of breast cancer. Therapeutic modalities for alleviation of clinical symptoms associated with bone metastasis include surgical resection, radiation, and bone-targeted therapies, including bisphosphonates (e.g., zoledronic acid; ZA) and a humanized antibody against receptor activator of nuclear factor-κB ligand (denosumab). However, the bone-targeted therapies are expensive, and have poor pharmacokinetic attributes and/or serious adverse effects. Therefore, novel strategies are needed for treatment of bone metastasis or to increase effectiveness of existing bone-targeted therapies. We have shown previously that benzyl isothiocyanate (BITC) is a novel inhibitor of osteoclast differentiation in vitro and bone metastasis in vivo. The present study shows that BITC + ZA combination synergistically inhibits osteoclast differentiation induced by addition of conditioned media from breast cancer cells. These effects were associated with a significant increase in levels of several antiosteoclastogenic cytokines, including interferons, interleukin (IL)-3, IL-4, and IL-27. Kyoto Encyclopedia of Genes and Genomes pathway analysis of RNA-seq data from BITC and/or ZA-treated cells revealed downregulation of genes of many pathways (e.g., actin cytoskeleton, Hippo signaling, etc.) by treatment with BITC + ZA combination, but not by BITC alone or ZA alone. Confocal microscopy confirmed severe disruption of actin cytoskeleton upon treatment of MCF-7 and MDA-MB-231 cells with the BITC + ZA combination. This combination also decreased the nuclear level of yes-associated protein, a core component of Hippo signaling. In conclusion, the present study offers a novel combination for prevention or treatment of bone metastasis of breast cancer.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Isotiocianatos , Humanos , Feminino , Ácido Zoledrônico/farmacologia , Ácido Zoledrônico/uso terapêutico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Osteoclastos/metabolismo , Osteoclastos/patologia , Transformação Celular Neoplásica , Neoplasias Ósseas/tratamento farmacológico
3.
Microvasc Res ; 153: 104667, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38307406

RESUMO

Extracellular signal-regulated kinase (Erk)-5 is a key mediator of endothelial cell homeostasis, and its inhibition causes loss of critical endothelial markers leading to endothelial dysfunction (ED). Circulating oxidized low-density lipoprotein (oxLDL) has been identified as an underlying cause of ED and atherosclerosis in metabolic disorders. Silymarin (Sym), a flavonolignan, possesses various pharmacological activities however its preventive mechanism in ED warrants further investigation. Here, we have examined the effects of Sym in regulating the expression of Erk-5 and ameliorating ED using in vitro and in vivo models. Primary human umbilical vein endothelial cells (pHUVECs) viability was measured by MTT assay; mRNA and protein expression by RT-qPCR and Western blotting; tube-formation assay was performed to examine endothelialness. In in-vivo experiments, normal chow-fed mice (control) or high-fat diet (HFD)-fed mice were administered Sym or Erk-5 inhibitor (BIX02189) and body weight, blood glucose, plasma-LDL, oxLDL levels, and expression of EC markers in the aorta were examined. Sym (5 µg/ml) maintained the viability and tube-formation ability of oxLDL exposed pHUVECs. Sym increased the expression of Erk-5, vWF, and eNOS and decreased ICAM-1 at transcription and translation levels in oxLDL-exposed pHUVECs. In HFD-fed mice, Sym reduced the body weight, blood glucose, LDL-cholesterol, and oxLDL levels, and increased the levels of vWF and eNOS along with Erk-5 and decreased the level of ICAM-1 in the aorta. These data suggest that Sym could be a potent anti-atherosclerotic agent that could elevate Erk-5 level in the ECs and prevent ED caused by oxidized LDL during HFD-induced obesity in mice.


Assuntos
Aterosclerose , Silimarina , Humanos , Animais , Camundongos , Molécula 1 de Adesão Intercelular , Transdução de Sinais , Células Cultivadas , Silimarina/efeitos adversos , Glicemia , Fator de von Willebrand , Lipoproteínas LDL/toxicidade , Lipoproteínas LDL/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/induzido quimicamente , Peso Corporal
4.
Prostate ; 83(6): 534-546, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36597263

RESUMO

We have shown that decursin, a coumarin compound, induces cell cycle arrest and apoptosis in human prostate cancer cells (PCa); however, its molecular mechanisms are largely unexplored. We studied the mechanisms associated with its anticancer activity in advanced human prostate carcinoma cells. We found that decursin inhibited epidermal growth factor receptor (EGFR) signaling by inhibiting its activating phosphorylation at tyrosine 1068 residue in DU145 and 22Rv1 cells. This inhibition of EGFR was associated with the downregulation of ERK1/2 phosphorylation. Both EGFR and ERK1/2 are known to be deregulated/activated in many human malignancies. Consistent with our earlier study, decursin (25-100 µM) treatment for 24-72 h inhibited DU145 cell proliferation by 49%-87% (p < 0.001) which was associated with strong G1 phase arrest and cell death. It also decreased (p < 0.001) the number of surviving colonies. Decursin moderately increased the expression of Rb-related proteins p107 and p130 but decreased the levels of E2F family transcription factors including E2F-3, E2F-4 and E2F-5. Further, decursin strongly inhibited the growth of androgen-dependent prostate carcinoma 22Rv1 cells from 61% to 79% (p < 0.001) and arrested these cells at G1 phase via induction of cyclin-dependent kinase inhibitor p27/Kip1 and downregulation of CDK2 and CDK4 protein expression. Additionally, EGFR inhibitor erlotinib- and EGF ligand-modulated EGFR activation validated EGFR signaling as a target of decursin-mediated cell growth inhibition and cytotoxicity. Decursin decreased EGF ligand-induced phosphorylation of EGFR (Y-1068) as well as activation of its downstream mediator, ERK1/2. Furthermore, inhibitory targeting of EGFR-ERK1/2 axis by combinatorial treatment of decursin and erlotinib further sensitized DU145 cells for the decursin-induced growth inhibition and cell death. Overall, these findings strongly suggest that anticancer efficacy of decursin against human PCa involves inhibitory targeting of EGFR-ERK1/2 signaling axis, a pathway constitutively active in advanced PCa.


Assuntos
Carcinoma , Neoplasias da Próstata , Masculino , Humanos , Fator de Crescimento Epidérmico , Sistema de Sinalização das MAP Quinases , Próstata/patologia , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/metabolismo , Ligantes , Receptores ErbB/metabolismo , Fosforilação , Neoplasias da Próstata/patologia , Carcinoma/metabolismo
5.
Toxicol Appl Pharmacol ; 462: 116409, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740148

RESUMO

Acacetin (AC), a naturally occurring flavonoid has shown anticancer potential. Herein, we studied the mechanisms of cell death and growth inhibition by AC in breast carcinoma T-47D and MDA-MB-231 cells. AC (10-40 µM) significantly decreased the levels of G2/M phase cyclins and CDKs, simultaneously increasing the expression of CDK inhibitors including Cip1/p21. A concentration-dependent increase in cell death was noted in both breast cancer cell lines with no such considerable effects on MCF-10A non-tumorigenic breast cells. The cell death-inducing potential of AC was further confirmed using confocal microscopy and flow cytometry analysis. AC resulted in mitochondrial superoxide generation, DNA damage, and ROS generation. N-acetyl cysteine (NAC) pre-treatment inhibited ROS generation and partially reversed ERK1/2 activation as well as cell death by AC. Further, AC enhanced the expression of RIP1 and RIP3, which mediate necroptosis. RIP1-specific inhibitor Necrostatin-1 (NS-1) reversed the AC-induced DNA damage and cell death. Collectively, these findings, for the first time, suggested that AC exerts its antitumor potential through ROS induction and RIP1-dependent necroptosis in breast carcinoma cells.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Apoptose , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/farmacologia
6.
FASEB J ; 36(12): e22654, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36421014

RESUMO

The therapeutic toxicity and resistance to currently available treatment options are major clinical challenges for the management of lung cancer. As a novel strategy, we synthesized analogues of a known flavonol, fisetin, which has shown anti-tumorigenic potential against cancer in cell culture with no adverse effects in animal models. We studied the synthetic analogues of fisetin for their anti-cancer potential against lung cancer cells, toxicity in mice and efficacy in a xenograft model. Brominated fisetin analogues were screened for their effects on the viability of A549 and H1299 lung cancer cells, and three analogues (3a, 3b, 3c), showed improved activity compared to fisetin. These analogues were more effective in restricting lung cancer cell proliferation, inducing G2 M phase cell cycle arrest and apoptosis. The fisetin analogues also downregulated EGFR/ERK1/2/STAT3 pathways. Fisetin analogue-induced apoptosis was accompanied by a higher Bax to Bcl-2 expression ratio. Based on the in vitro studies, the most effective fisetin analogue 3b was evaluated for in vivo toxicity, wherein it did not show any hepatotoxicity or adverse health effects in mice. Furthermore, analogue 3b showed greater antitumor efficacy (p < .001) as compared to its parent compound fisetin in a human lung cancer cell xenograft study in athymic mice. Together, our data suggest that the novel fisetin analogue 3b is more effective in restricting lung cancer cell growth, both in vitro as well as in vivo, without any apparent toxicity, supporting its further development as a novel anti-lung cancer agent.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Sistema de Sinalização das MAP Quinases , Neoplasias Pulmonares/tratamento farmacológico , Flavonoides/farmacologia , Flavonóis/farmacologia , Pontos de Checagem do Ciclo Celular , Apoptose , Receptores ErbB , Fator de Transcrição STAT3
7.
Cell Commun Signal ; 21(1): 127, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280623

RESUMO

The School of Life Sciences at the Jawaharlal Nehru University in New Delhi, India held an International Symposium on Mitochondria, Cell Death and Human Diseases on February 18-19, 2023. The meeting provided a highly interactive forum for scientific discussion, cultural exchange, and collaborations between international scientists working in diverse areas of mitochondrial biology, cell death, and cancer. The two-day symposium attracted more than 180 delegates that included leading international scientists, early career researchers in India, as well as postdoctoral fellows and students. Several of the students, postdoctoral fellows, and junior faculty presented platform talks and had a chance to showcase the depth and emerging progress in biomedical research in India. The meeting will be instrumental for planning future congresses and symposium throughout India, not only to focus on mitochondrial biology, cell death and cancer but to foster continued ferment and collaborations in the biological sciences throughout India.


Assuntos
Mitocôndrias , Neoplasias , Humanos , Universidades , Morte Celular , Índia
8.
Childs Nerv Syst ; 39(12): 3601-3606, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37392224

RESUMO

INTRODUCTION: Spontaneous pneumocephalus following ventriculoperitoneal shunting is a very unique complication, seen in a handful of patients. Small bony defects form as a result of chronically raised intracranial pressure, which can later lead to pneumocephalus once intracranial pressure decreases following ventriculoperitoneal shunting. CASE REPORT: Here, we present a case of a 15-year-old girl with NF1 who presented to us with pneumocephalus 10 months following shunting and our management strategy along with a literature review of this condition. CONCLUSION: NF1 & hydrocephalus can lead to skull base erosion, which needs to be looked up before proceeding with VP shunting to avoid delayed onset pneumocephalus. SOKHA with the opening of LT is a minimally invasive approach suitable to tackle both problems simultaneously.


Assuntos
Pneumocefalia , Derivação Ventriculoperitoneal , Adolescente , Feminino , Humanos , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/cirurgia , Hidrocefalia/complicações , Hipertensão Intracraniana/etiologia , Pneumocefalia/diagnóstico por imagem , Pneumocefalia/etiologia , Pneumocefalia/cirurgia , Derivação Ventriculoperitoneal/efeitos adversos
9.
Drug Chem Toxicol ; 45(2): 576-588, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32141350

RESUMO

In this study, the hepatoprotective activity of methanol bark extract of Alangium salviifolium (BEA) was evaluated for biochemical and histological parameters in swiss albino mice with CCl4-induced hepatotoxicity. The hepatomodulatory effect of two doses of BEA (20 and 50 mg/kg bw for 15 days by oral gavage) was assessed on antioxidant enzymes, phase I and phase II drug detoxifying enzymes. For the characterization of the extract, GC-MS analysis was performed that revealed the abundance of alkaloids and steroidal compounds. Total phenolic and flavonoid contents in BEA were 69.61 ± 0.18 mg GAE/g and 46.27 ± 3.44 mg Rutin/g, respectively. BEA administration decreased the levels of AST, ALT, and ALP, which were elevated due to hepatic damage by CCl4. BEA significantly decreased the lipid peroxidation, activities of LDH, and phase I enzymes including cytochrome P450 reductase, cytochrome b5 reductase while increased the activities of SOD, CAT, and phase II enzymes DT-diaphorase and glutathione S-transferase in liver. Further, histological evaluation of the liver tissue was suggestive of the protective effect of BEA against CCl4 toxicity. Together, these results suggest that BEA has strong hepatoprotective activity in mice which may also be attributed to its potential chemopreventive efficacy.


Assuntos
Alangiaceae , Doença Hepática Induzida por Substâncias e Drogas , Alangiaceae/metabolismo , Animais , Antioxidantes/metabolismo , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Peroxidação de Lipídeos , Fígado , Camundongos , Extratos Vegetais/química
10.
Br J Cancer ; 124(3): 604-615, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139797

RESUMO

BACKGROUND: To circumvent Warburg effect, several clinical trials for different cancers are utilising a combinatorial approach using metabolic reprogramming and chemotherapeutic agents including metformin. The majority of these metabolic interventions work via indirectly activating AMP-activated protein kinase (AMPK) to alter cellular metabolism in favour of oxidative phosphorylation over aerobic glycolysis. The effect of these drugs is dependent on glycaemic and insulin conditions.  Therefore, development of small molecules, which can activate AMPK, irrespective of the energy state, may be a better approach for triple-negative breast cancer (TNBC) treatment. METHODS: Therapeutic effect of SU212 on TNBC cells was examined using in vitro and in vivo models. RESULTS: We developed and characterised the efficacy of novel AMPK activator (SU212) that selectively induces oxidative phosphorylation and decreases glycolysis in TNBC cells, while not affecting these pathways in normal cells.   SU212 accomplished this metabolic reprogramming by activating AMPK independent of energy stress and irrespective of the glycaemic/insulin state. This leads to mitotic phase arrest and apoptosis in TNBC cells. In vivo, SU212 inhibits tumour growth, cancer progression and metastasis. CONCLUSIONS: SU212 directly activates AMPK in TNBC cells, but does not hamper glucose metabolism in normal cells. Our study provides compelling preclinical data for further development of SU212 for the treatment of TNBC.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Morte Celular , Fosforilação Oxidativa/efeitos dos fármacos , Podofilotoxina/análogos & derivados , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Ativação Enzimática/efeitos dos fármacos , Feminino , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Ácido Láctico/metabolismo , Lipogênese/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Distribuição Aleatória , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Efeito Warburg em Oncologia
11.
Int J Cancer ; 145(5): 1254-1269, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31008529

RESUMO

Recent advancement in understanding cancer etiology has highlighted epigenetic deregulation as an important phenomenon leading to poor prognosis in glioblastoma (GBM). Polycomb repressive complex 2 (PRC2) is one such important epigenetic modifier reportedly altered in GBM. However, its defined mechanism in tumorigenesis still remains elusive. In present study, we analyzed our in-house ChIPseq data for H3k27me3 modified miRNAs and identified miR-490-3p to be the most common target in GBM with significantly downregulated expression in glioma patients in both TCGA and GBM patient cohort. Our functional analysis delineates for the first time, a central role of PRC2 catalytic unit EZH2 in directly regulating expression of this miRNA and its host gene CHRM2 in GBM. In accordance, cell line treatment with EZH2 siRNA and 5-azacytidine also confirmed its coregulation by CpG and histone methylation based epigenetic mechanisms. Furthermore, induced overexpression of miR-490-3p in GBM cell lines significantly inhibited key hallmarks including cellular proliferation, colony formation and spheroid formation, as well as epithelial-to-mesenchymal transition (EMT), with downregulation of multiple EMT transcription factors and promigratory genes (MMP9, CCL5, PIK3R1, ICAM1, ADAM17 and NOTCH1). We also for the first time report TGFBR1 and TGIF2 as two direct downstream effector targets of miR-490-3p that are also deregulated in GBM. TGIF2, a novel target, was shown to promote migration and EMT that could partially be rescued by miR-490-3p overexpression. Overall, this stands as a first study that provides a direct link between epigenetic modulator EZH2 and oncogenic TGF-ß signaling involving novel miR-490-3p/TGIF2/TGFBR1 axis, that being targetable might be promising in developing new therapeutic intervention strategies for GBM.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Complexo Repressor Polycomb 2/genética , Proteínas Repressoras/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias Encefálicas , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Epigênese Genética , Transição Epitelial-Mesenquimal , Glioblastoma/metabolismo , Proteínas de Homeodomínio/genética , Humanos , MicroRNAs/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais
12.
Mol Cell Biochem ; 458(1-2): 49-59, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30911957

RESUMO

Berberine has shown anticancer properties and has potential for a chemopreventive and/or chemotherapeutic agent for breast cancer. Berberine showed cytotoxicity to breast cancer cells, with an increase in the levels of p21/cip1 and p27/kip1, cyclin-dependent kinase inhibitors (CDKI), but mechanisms involved in up-regulating these molecules are largely unknown. Herein, we studied the key regulatory mechanisms involved in berberine-mediated up-regulation of p21/cip1 and p27/kip1. Berberine treatment for 24 and 48 h decreased the number of cells by 44-84% (P < 0.0001) and 38-78% (P < 0.0001), and increased cell death by 12-17% (P < 0.005) and 38-78% (P < 0.0001) in MCF-7 and MDA-MB-231 cells, respectively. Cells were arrested in G1 phase by berberine which was accompanied with up-regulation of mRNA and protein level of both p21/cip1 and p27/kip1. Berberine decreased the expression of protein levels of cyclin D1, cyclin E, CDK2, CDK4, and CDK6 to cause G1 phase arrest. Berberine caused nuclear localization of p21/cip1 in both the cell lines. Our data for the first time showed that the post-translational stability of both the proteins was strongly increased by berberine as examined by cycloheximide chase assay. Inhibition of Akt was associated with berberine-mediated up-regulation of p21/cip1 and also led to a decrease in cell viability accompanied with significant G1 phase cell cycle arrest. Our study revealed that berberine not only up-regulates mRNA and protein levels of p21/cip1 and p27/kip1 but also increases their nuclear localization and post-translational protein stability. Further, Akt inhibition was found to mediate berberine-mediated up-regulation of p21/cip1 but not the p27/kip1.


Assuntos
Berberina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/biossíntese , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Humanos , Células MCF-7 , Estabilidade Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética
13.
Biochem Biophys Res Commun ; 499(2): 374-380, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29577899

RESUMO

Integrins are the major cell adhesion glycoproteins involved in cell-extracellular matrix (ECM) interaction and metastasis. Further, glycosylation on integrin is necessary for its proper folding and functionality. Herein, differential expression of integrins viz., αvß3 and αvß6 was examined in MDA-MB-231, MDA-MB-468 and MCF-10A cells, which signify three different stages of breast cancer development from highly metastatic to non-tumorigenic stage. The expression of αvß3 and αvß6 integrins at mRNA and protein levels was observed in all three cell lines and the results displayed a distinct pattern of expression. Highly metastatic cells showed enhanced expression of αvß3 than moderate metastatic and non-tumorigenic cells. The scenario was reversed in case of αvß6 integrin, which was strongly expressed in moderate metastatic and non-tumorigenic cells. N-glycosylation of αvß3 and αvß6 integrins is required for the attachment of cells to ECM proteins like fibronectin. The cell adhesion properties were found to be different in these cancer cells with respect to the type of integrins expressed. The results testify that αvß3 integrin in highly metastatic cells, αvß6 integrin in both moderate metastatic and non-tumorigenic cells play an important role in cell adhesion. The investigation typify that N-glycosylation on integrins is also necessary for cell-ECM interaction. Further, glycosylation inhibition by Swainsonine is found to be more detrimental to invasive property of moderate metastatic cells. Conclusively, types of integrins expressed as well as their N-glycosylation pattern alter during the course of breast cancer progression.


Assuntos
Antígenos de Neoplasias/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Junções Célula-Matriz/metabolismo , Progressão da Doença , Integrina alfaVbeta3/metabolismo , Integrinas/metabolismo , Anticorpos Bloqueadores/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Junções Célula-Matriz/efeitos dos fármacos , Feminino , Fibronectinas/metabolismo , Glicosilação , Humanos , Invasividade Neoplásica , Swainsonina/química , Swainsonina/farmacologia
14.
Photodermatol Photoimmunol Photomed ; 34(1): 91-101, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29049844

RESUMO

BACKGROUND: Apart from exposure to UV-radiation, studies show relationship between skin cancer and chronic ingestion of arsenic through drinking water. Chemopreventive strategies could help in reducing the toxic effects of arsenic and arsenic-induced skin cancer. METHODS: Cytotoxicity of arsenic on human skin keratinocytes HaCaT cells was evaluated using MTT and trypan blue assays. Arsenic-induced malignant transformant HaCaT cells were selected through soft agar colony assay. Cell cycle progression was analyzed through FACS. The expressions of genes modulated by arsenic were studied through RT-PCR. RESULTS: The lower concentrations (0.1-0.5 µmol/L) of arsenic were non-toxic and transformed HaCaT cells on chronic exposure, and also enhanced the cell proliferation. Silibinin and fisetin reduced the arsenic-induced cell proliferation and malignant transformation. A slight increase in G2-M phase cell population was also observed. The anti-proliferation effects of flavonoids on HaCaT transformants were further enhanced when combined with gamma radiation. Chronic and acute exposure to arsenic modulated the expression of transformation-associated genes including Bcl-2A1, IGFL-1, Rab31, and TNC in HaCaT cells. CONCLUSIONS: Chronic exposure to lower arsenic concentrations caused malignant transformation of skin keratinocytes and that effect was attenuated by flavonoids silibinin and fisetin. Thus, chemoprevention could reduce arsenic-caused detrimental effects on skin cells.


Assuntos
Antioxidantes/farmacologia , Arsênio/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Flavonoides/farmacologia , Silimarina/farmacologia , Linhagem Celular , Proliferação de Células/efeitos da radiação , Sobrevivência Celular , Transformação Celular Neoplásica/genética , Flavonóis , Raios gama , Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Queratinócitos , Antígenos de Histocompatibilidade Menor/genética , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Silibina , Tenascina/genética , Proteínas rab de Ligação ao GTP/genética
15.
BMC Complement Altern Med ; 18(1): 81, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29514630

RESUMO

BACKGROUND: Salix aegyptiaca is known for its medicinal properties mainly due to the presence of salicylate compounds. However, it also contains other beneficial phytochemicals such as gallic acid, quercetin, rutin and vanillin. The aim of the study was to examine the redox potential, antioxidant and anti-inflammatory activity of these phytochemicals along with acetylsalicylic acid. METHODS: The redox potential and antioxidant activity of gallic acid, quercetin, rutin, vanillin and acetylsalicylic acid were determined by oxidation-reduction potential electrode method and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, respectively. In ex vivo studies, antioxidant activity of these phytochemicals was determined by lipid peroxidation and carbonyl content assay in the liver of mice. Anti-inflammatory activity was determined by protein denaturation method. Six-week old C57BL/6 mice treated with gallic acid (100 mg/kg body weight) and acetylsalicylic acid (25 and 50 mg/kg body weight) to investigate their in vivo modulatory effects on the specific activities of drug metabolizing phase I and phase II enzymes, antioxidant enzymes and level of lipid peroxidation in liver. RESULTS: The order of ability to donate electron and antioxidant activity was found to be: gallic acid > quercetin > rutin > vanillin > acetylsalicylic acid. In ex vivo studies, the similar pattern and magnitude of inhibitory effects of these phytochemicals against peroxidative damage in microsomes and protein carbonyl in cytosolic fraction were observed. In in vivo studies, gallic acid and acetylsalicylic acid alone or in combination, enhanced the specific activities of drug metabolizing phase I and phase II enzymes as well as antioxidant enzymes and also inhibited lipid peroxidation in liver. CONCLUSIONS: These findings show a close link between the electron donation and antioxidation potential of these phytochemicals, and in turn their biological activity. Gallic acid, quercetin, rutin and vanillin were found to be better electron donors and antioxidants and therefore, might be mainly responsible for the antioxidant properties of S. aegyptiaca, while acetylsalicylic acid provided its maximum anti-inflammatory activity.


Assuntos
Antioxidantes/administração & dosagem , Inativação Metabólica/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Polifenóis/administração & dosagem , Salix/química , Animais , Catalase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa Peroxidase/metabolismo , Masculino , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Camundongos , Camundongos Endogâmicos C57BL , Superóxido Dismutase/metabolismo
16.
Mol Carcinog ; 56(2): 499-514, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27254419

RESUMO

The anticancer effects of fisetin, a dietary agent, are largely unknown against human gastric cancer. Herein, we investigated the mechanisms of fisetin-induced inhibition of growth and survival of human gastric carcinoma AGS and SNU-1 cells. Fisetin (25-100 µM) caused significant decrease in the levels of G1 phase cyclins and CDKs, and increased the levels of p53 and its S15 phosphorylation in gastric cancer cells. We also observed that growth suppression and death of non-neoplastic human intestinal FHs74int cells were minimally affected by fisetin. Fisetin strongly increased apoptotic cells and showed mitochondrial membrane depolarization in gastric cancer cells. DNA damage was observed as early as 3 h after fisetin treatment which was accompanied with gamma-H2A.X(S139) phosphorylation and cleavage of PARP. Fisetin-induced apoptosis was observed to be independent of p53. DCFDA and MitoSOX analyses showed an increase in mitochondrial ROS generation in time- and dose-dependent fashion. It also increased cellular nitrite and superoxide generation. Pre-treatment with N-acetyl cysteine (NAC) inhibited ROS generation and also caused protection from fisetin-induced DNA damage. The formation of comets were observed in only fisetin treated cells which was blocked by NAC pre-treatment. Further investigation of the source of ROS, using mitochondrial respiratory chain (MRC) complex inhibitors, suggested that fisetin caused ROS generation specifically through complex I. Collectively, these results for the first time demonstrated that fisetin possesses anticancer potential through ROS production most likely via MRC complex I leading to apoptosis in human gastric carcinoma cells. © 2016 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Flavonoides/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Flavonóis , Mucosa Gástrica/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estômago/efeitos dos fármacos , Estômago/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Proteína Supressora de Tumor p53/metabolismo
17.
Biochem Biophys Res Commun ; 477(4): 1065-1071, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27402273

RESUMO

Lung cancer is the most frequently diagnosed malignancy that contributes to high proportion of deaths globally among patients who die due to cancer. Chemotherapy remains the common mode of treatment for lung cancer patients though with limited success. We assessed the biological effects and associated molecular changes of evodiamine, a plant alkaloid, on human lung cancer A549 and H1299 cells along with other epithelial cancer and normal lung SAEC cells. Our data showed that 20-40 µM evodiamine treatment for 24-48 h strongly (up to 73%, P < 0.001) reduced the growth and survival of these cancer cells. However, it also moderately inhibited growth and survival of SAEC cells. A strong inhibition (P < 0.001) was observed on clonogenicity of A549 cells. Further, evodiamine increased (4-fold) mitochondrial membrane depolarization with 6-fold increase in apoptosis and a slight increase in Bax/Bcl-2 ratio. It increased the cytochrome-c release from mitochondria into the cytosol as well as nucleus. Cytosolic cytochrome-c activated cascade of caspase-9 and caspase-3 intrinsic pathway, however, DR5 and caspase-8 extrinsic pathway was also activated which could be due to nuclear cytochrome-c. Pan-caspase inhibitor (z-VAD.fmk) partially reversed evodiamine induced apoptosis. An increase in p53 as well as its serine 15 phosphorylation was also observed. Pifithrin-α, a p53 inhibitor, slightly inhibited growth of A549 cells and under p53 inhibitory condition evodiamine-induced apoptosis could not be reversed. Together these findings suggest that evodiamine is a strong inducer of apoptosis in lung epithelial cancer cells independent of their p53 status and that could involve both intrinsic as well as extrinsic pathway of apoptosis. Thus evodiamine could be a potential anticancer agent against lung cancer.


Assuntos
Núcleo Celular/metabolismo , Citocromos c/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Quinazolinas/administração & dosagem , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Alcaloides/administração & dosagem , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Neoplasias Pulmonares/patologia , Sinais de Localização Nuclear/efeitos dos fármacos , Distribuição Tecidual , Resultado do Tratamento
18.
Bull Environ Contam Toxicol ; 96(2): 265-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26464392

RESUMO

Heavy metal pollution of soil is a global environmental problem and therefore its remediation is of paramount importance. Cadmium (Cd) is a potential toxicant to living organisms and even at very low concentrations. This study was aimed to assess the effectiveness of Ricinus communis for remediation of Cd contaminated soils. For this, growth and biomass of R. communis and Cd accumulation, translocation and partitioning in different plant parts were investigated after 8 months of plant growth in Cd contaminated soil (17.50 mg Cd kg−1 soil). Eight months old plants stabilized 51 % Cd in its roots and rest of the metal was transferred to the stem and leaves. There were no significant differences in growth, biomass and yield between control and Cd treated plants, except fresh weight of shoots. The seed yield per plant was reduced only by 5 % of Cd contaminated plants than control. The amount of Cd translocated to the castor seeds was nominal i.e. 0.007 µg Cd g−1 seeds. The bioconcentration factor reduced significantly in shoots and seeds in comparison to roots. The data indicates that R. communis is highly tolerant to Cd contamination and can be used for remediation of heavy metal polluted sites.


Assuntos
Cádmio/metabolismo , Produtos Agrícolas/metabolismo , Ricinus/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Biomassa , Cádmio/análise , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Ricinus/crescimento & desenvolvimento , Sementes/metabolismo , Solo/química , Poluentes do Solo/análise
19.
Biochem Biophys Res Commun ; 456(1): 262-8, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25446081

RESUMO

Radiotherapy of is well established and frequently utilized in prostate cancer (PCa) patients. However, recurrence following therapy and distant metastases are commonly encountered problems. Previous studies underline that, in addition to its therapeutic effects, ionizing radiation (IR) increases the vascularity and invasiveness of surviving radioresistant cancer cells. This invasive phenotype of radioresistant cells is an upshot of IR-induced pro-survival and mitogenic signaling in cancer as well as endothelial cells. Here, we demonstrate that a plant flavonoid, silibinin can radiosensitize endothelial cells by inhibiting expression of pro-angiogenic factors. Combining silibinin with IR not only strongly down-regulated endothelial cell proliferation, clonogenicity and tube formation ability rather it strongly (p<0.001) reduced migratory and invasive properties of PCa cells which were otherwise marginally affected by IR treatment alone. Most of the pro-angiogenic (VEGF, iNOS), migratory (MMP-2) and EMT promoting proteins (uPA, vimentin, N-cadherin) were up-regulated by IR in PCa cells. Interestingly, all of these invasive and EMT promoting actions of IR were markedly decreased by silibinin. Further, we found that potentiated effect was an end result of attenuation of IR-activated mitogenic and pro-survival signaling, including Akt, Erk1/2 and STAT-3, by silibinin.


Assuntos
Indutores da Angiogênese/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias da Próstata/patologia , Radiação Ionizante , Silimarina/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos da radiação , Movimento Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Humanos , Masculino , Recidiva Local de Neoplasia , Fenótipo , Silibina , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização
20.
Nutr Cancer ; 67(4): 647-58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25868784

RESUMO

Effects of silibinin, a naturally occurring flavanone, on prostate carcinoma (PCa) cells in presence of arsenic are not known. Arsenic is clinically approved for leukemia treatment; however, studies are not enough to support its role in the management of solid tumors. In the present study, we observed that silibinin (100 µM) modulated the oxidative status of human PCa DU145 cells exposed to arsenic (0.5 or 5 µM) and inhibited cell growth and survival by primarily inducing autophagy and apoptosis. The silibinin-arsenic combination also inhibited the growth, survival, and clonogenic potential of 22Rv1 PCa cells. Silibinin with 0.5 or 5 µM arsenic induced G1 or G2/M phase arrest, respectively, and decreased the protein levels of CDK2, -4, and -6 and cyclin D1, D3, and E and increased CDK inhibitors p21 and p27. Arsenic alone increased cyclin B1 level and Cdc2 kinase activity which were reduced in silibinin combination. Cell motility and invasiveness along with expression of MMP-2 and vimentin were suppressed. Together, these in vitro findings suggest that in presence of arsenic, silibinin strongly inhibits tumorigenic and metastatic potential of PCa cells.


Assuntos
Arsênio/farmacologia , Neoplasias da Próstata/patologia , Silimarina/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Humanos , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Invasividade Neoplásica , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Silibina , Vimentina/genética , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa