Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Magn Reson Imaging ; 59(2): 688-698, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37194646

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) stromal disposition is thought to influence chemotherapy efficacy and increase tissue stiffness, which could be quantified noninvasively via MR elastography (MRE). Current methods cause position-based errors in pancreas location over time, hampering accuracy. It would be beneficial to have a single breath-hold acquisition. PURPOSE: To develop and test a single breath-hold three-dimensional MRE technique utilizing prospective undersampling and a compressed sensing reconstruction (CS-MRE). STUDY TYPE: Prospective. POPULATION: A total of 30 healthy volunteers (HV) (31 ± 9 years; 33% male) and five patients with PDAC (69 ± 5 years; 80% male). FIELD STRENGTH/SEQUENCE: 3-T, GRE Ristretto MRE. ASSESSMENT: First, optimization of multi breath-hold MRE was done in 10 HV using four combinations of vibration frequency, number of measured wave-phase offsets, and TE and looking at MRE quality measures in the pancreas head. Second, viscoelastic parameters delineated in the pancreas head or tumor of CS-MRE were compared against (I) 2D and (II) 3D four breath-hold acquisitions in HV (N = 20) and PDAC patients. Intrasession repeatability was assessed for CS-MRE in a subgroup of healthy volunteers (N = 15). STATISTICAL TESTS: Tests include repeated measures analysis of variance (ANOVA), Bland-Altman analysis, and coefficients of variation (CoVs). A P-value <.05 was considered statistically significant. RESULTS: Optimization of the four breath-hold acquisitions resulted in 40 Hz vibration frequency, five wave-phases, and echo time (TE) = 6.9 msec as the preferred method (4BH-MRE). CS-MRE quantitative results did not differ from 4BH-MRE. Shear wave speed (SWS) and phase angle differed significantly between HV and PDAC patients using 4BH-MRE or CS-MRE. The limits of agreement for SWS were [-0.09, 0.10] m/second and the within-subject CoV was 4.8% for CS-MRE. DATA CONCLUSION: CS-MRE might allow a single breath-hold MRE acquisition with comparable SWS and phase angle as 4BH-MRE, and it may still enable to differentiate between HV and PDAC. LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 2.


Assuntos
Técnicas de Imagem por Elasticidade , Neoplasias Pancreáticas , Humanos , Masculino , Feminino , Estudos Prospectivos , Técnicas de Imagem por Elasticidade/métodos , Reprodutibilidade dos Testes , Suspensão da Respiração , Pâncreas/diagnóstico por imagem , Neoplasias Pancreáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
2.
J Magn Reson Imaging ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177509

RESUMO

BACKGROUND: Gliomas are highly invasive brain neoplasms. MRI is the most important tool to diagnose and monitor glioma but has shortcomings. In particular, the assessment of tumor cell invasion is insufficient. This is a clinical dilemma, as recurrence can arise from MRI-occult glioma cell invasion. HYPOTHESIS: Tumor cell invasion, tumor growth and radiotherapy alter the brain parenchymal microstructure and thus are assessable by diffusion tensor imaging (DTI) and MR elastography (MRE). STUDY TYPE: Experimental, animal model. ANIMAL MODEL: Twenty-three male NMRI nude mice orthotopically implanted with S24 patient-derived glioma cells (experimental mice) and 9 NMRI nude mice stereotactically injected with 1 µL PBS (sham-injected mice). FIELD STRENGTH/SEQUENCE: 2D and 3D T2-weighted rapid acquisition with refocused echoes (RARE), 2D echo planar imaging (EPI) DTI, 2D multi-slice multi-echo (MSME) T2 relaxometry, 3D MSME MRE at 900 Hz acquired at 9.4 T (675 mT/m gradient strength). ASSESSMENT: Longitudinal 4-weekly imaging was performed for up to 4 months. Tumor volume was assessed in experimental mice (n = 10 treatment-control, n = 13 radiotherapy). The radiotherapy subgroup and 5 sham-injected mice underwent irradiation (3 × 6 Gy) 9 weeks post-implantation/sham injection. MRI-/MRE-parameters were assessed in the corpus callosum and tumor core/injection tract. Imaging data were correlated to light sheet microscopy (LSM) and histology. STATISTICAL TESTS: Paired and unpaired t-tests, a P-value ≤0.05 was considered significant. RESULTS: From week 4 to 8, a significant callosal stiffening (4.44 ± 0.22 vs. 5.31 ± 0.29 kPa) was detected correlating with LSM-proven tumor cell invasion. This was occult to all other imaging metrics. Histologically proven tissue destruction in the tumor core led to an increased T2 relaxation time (41.65 ± 0.34 vs. 44.83 ± 0.66 msec) and ADC (610.2 ± 12.27 vs. 711.2 ± 13.42 × 10-6 mm2/s) and a softening (5.51 ± 0.30 vs. 4.24 ± 0.29 kPa) from week 8 to 12. Radiotherapy slowed tumor progression. DATA CONCLUSION: MRE is promising for the assessment of key glioma characteristics. EVIDENCE LEVEL: NA TECHNICAL EFFICACY: Stage 2.

3.
J Magn Reson Imaging ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39165139

RESUMO

BACKGROUND: Magnetic resonance elastography (MRE) can quantify tissue biomechanics noninvasively, including pathological hepatic states like metabolic dysfunction-associated steatohepatitis. PURPOSE: To compare the performance of 2D/3D-MRE using the gravitational (GT) transducer concept with the current commercial acoustic (AC) solution utilizing a 2D-MRE approach. Additionally, quality index markers (QIs) were proposed to identify image pixels with sufficient quality for reliably estimating tissue biomechanics. STUDY TYPE: Prospective. POPULATION: One hundred seventy participants with suspected or confirmed liver disease (median age, 57 years [interquartile range (IQR), 46-65]; 66 females), and 11 healthy volunteers (median age, 31 years [IQR, 27-34]; 5 females). FIELD STRENGTH/SEQUENCE: Participants were scanned twice at 1.5 T and 60 Hz vibration frequency: first, using AC-MRE (2D-MRE, spin-echo EPI sequence, 11 seconds breath-hold), and second, using GT-MRE (2D- and 3D-MRE, gradient-echo sequence, 14 seconds breath-hold). ASSESSMENT: Image analysis was performed by four independent radiologists and one biomedical engineer. Additionally, superimposed analytic plane shear waves of known wavelength and attenuation at fixed shear modulus were used to propose pertinent QIs. STATISTICAL TESTS: Spearman's correlation coefficient (r) was applied to assess the correlation between modalities. Interreader reproducibility was evaluated using Bland-Altman bias and reproducibility coefficients. P-values <0.05 were considered statistically significant. RESULTS: Liver stiffness quantified via GT-2D/3D correlated well with AC-2D (r ≥ 0.89 [95% CI: 0.85-0.92]) and histopathological grading (r ≥ 0.84 [95% CI: 0.72-0.91]), demonstrating excellent agreement in Bland-Altman plots and between readers (κ ≥ 0.86 [95% CI: 0.81-0.91]). However, GT-2D showed a bias in overestimating stiffness compared to GT-3D. Proposed QIs enabled the identification of pixels deviating beyond 10% from true stiffness based on a combination of total wave amplitude, temporal sinusoidal nonlinearity, and wave signal-to-noise ratio for GT-3D. CONCLUSION: GT-MRE represents an alternative to AC-MRE for noninvasive liver tissue characterization. Both GT-2D and 3D approaches correlated strongly with the established commercial approach, offering advanced capabilities in abdominal imaging compared to AC-MRE. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.

4.
NMR Biomed ; 35(7): e4701, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35088465

RESUMO

Magnetic resonance elastography aims to non-invasively and remotely characterize the mechanical properties of living tissues. To quantitatively and regionally map the shear viscoelastic moduli in vivo, the technique must achieve proper mechanical excitation throughout the targeted tissues. Although it is straightforward, ante manibus, in close organs such as the liver or the breast, which practitioners clinically palpate already, it is somewhat fortunately highly challenging to trick the natural protective barriers of remote organs such as the brain. So far, mechanical waves have been induced in the latter by shaking the surrounding cranial bones. Here, the skull was circumvented by guiding pressure waves inside the subject's buccal cavity so mechanical waves could propagate from within through the brainstem up to the brain. Repeatable, reproducible and robust displacement fields were recorded in phantoms and in vivo by magnetic resonance elastography with guided pressure waves such that quantitative mechanical outcomes were extracted in the human brain.


Assuntos
Técnicas de Imagem por Elasticidade , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Elasticidade , Técnicas de Imagem por Elasticidade/métodos , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas
5.
Magn Reson Med ; 85(5): 2377-2390, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33296103

RESUMO

Magnetic resonance elastography (MRE) is a phase contrast-based MRI technique that can measure displacement due to propagating mechanical waves, from which material properties such as shear modulus can be calculated. Magnetic resonance elastography can be thought of as quantitative, noninvasive palpation. It is increasing in clinical importance, has become widespread in the diagnosis and staging of liver fibrosis, and additional clinical applications are being explored. However, publications have reported MRE results using many different parameters, acquisition techniques, processing methods, and varied nomenclature. The diversity of terminology can lead to confusion (particularly among clinicians) about the meaning of and interpretation of MRE results. This paper was written by the MRE Guidelines Committee, a group formalized at the first meeting of the ISMRM MRE Study Group, to clarify and move toward standardization of MRE nomenclature. The purpose of this paper is to (1) explain MRE terminology and concepts to those not familiar with them, (2) define "good practices" for practitioners of MRE, and (3) identify opportunities to standardize terminology, to avoid confusion.


Assuntos
Técnicas de Imagem por Elasticidade , Humanos , Cirrose Hepática/diagnóstico por imagem , Imageamento por Ressonância Magnética
6.
J Magn Reson Imaging ; 53(5): 1510-1521, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33403750

RESUMO

BACKGROUND: Changes in brain stiffness can be an important biomarker for neurological disease. Magnetic resonance elastography (MRE) quantifies tissue stiffness, but the results vary between acquisition and reconstruction methods. PURPOSE: To measure MRE repeatability and estimate the effect of different reconstruction methods and varying data quality on estimated brain stiffness. STUDY TYPE: Prospective. SUBJECTS: Fifteen healthy subjects. FIELD STRENGTH/SEQUENCE: 3T MRI, gradient-echo elastography sequence with a 50 Hz vibration frequency. ASSESSMENT: Imaging was performed twice in each subject. Images were reconstructed using a curl-based and a finite-element-model (FEM)-based method. Stiffness was measured in the whole brain, in white matter, and in four cortical and four deep gray matter regions. Repeatability coefficients (RC), intraclass correlation coefficients (ICC), and coefficients of variation (CV) were calculated. MRE data quality was quantified by the ratio between shear waves and compressional waves. STATISTICAL TESTS: Median values with range are presented. Reconstruction methods were compared using paired Wilcoxon signed-rank tests, and Spearman's rank correlation was calculated between MRE data quality and stiffness. Holm-Bonferroni corrections were employed to adjust for multiple comparisons. RESULTS: In the whole brain, CV was 4.3% and 3.8% for the curl and the FEM reconstruction, respectively, with 4.0-12.8% for subregions. Whole-brain ICC was 0.60-0.74, ranging from 0.20 to 0.89 in different regions. RC for the whole brain was 0.14 kPa and 0.17 kPa for the curl and FEM methods, respectively. FEM reconstruction resulted in 39% higher stiffness than the curl reconstruction (P < 0.05). MRE data quality, defined as shear-compression wave ratio, was higher in peripheral regions than in central regions of the brain (P < 0.05). No significant correlations were observed between MRE data quality and stiffness estimates. DATA CONCLUSION: MRE of the human brain is a robust technique in terms of repeatability. Caution is warranted when comparing stiffness values obtained with different techniques. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Técnicas de Imagem por Elasticidade , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Humanos , Imageamento por Ressonância Magnética , Estudos Prospectivos , Reprodutibilidade dos Testes
7.
J Magn Reson Imaging ; 54(6): 1937-1949, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33991378

RESUMO

BACKGROUND: Noninvasive diagnostic methods are urgently required in disease stratification and monitoring in nonalcoholic fatty liver disease (NAFLD). Multiparametric magnetic resonance imaging (MRI) is a promising technique to assess hepatic steatosis, inflammation, and fibrosis, potentially enabling noninvasive identification of individuals with active and advanced stages of NAFLD. PURPOSE: To examine the diagnostic performance of multiparametric MRI for the assessment of disease severity along the NAFLD disease spectrum with comparison to histological scores. STUDY TYPE: Prospective, cohort. POPULATION: Thirty-seven patients with NAFLD. FIELD STRENGTH/SEQUENCE: Multiparametric MRI at 3.0 T consisted of magnetic resonance (MR) spectroscopy (MRS) with multi-echo stimulated-echo acquisition mode, magnitude-based and three-point Dixon using a two-dimensional multi-echo gradient echo, MR elastography (MRE) using a generalized multishot gradient-recalled echo sequence and intravoxel incoherent motion (IVIM) using a multislice diffusion weighted single-shot echo-planar sequence. ASSESSMENT: Histological steatosis grades were compared to proton density fat fraction measured by MRS (PDFFMRS ), magnitude-based MRI (PDFFMRI-M ), and three-point Dixon (PDFFDixon ), as well as FibroScan® controlled attenuation parameter (CAP). Fibrosis and disease activity were compared to IVIM and MRE. FibroScan® liver stiffness measurements were compared to fibrosis levels. Diagnostic performance of all imaging parameters was determined for distinction between simple steatosis and nonalcoholic steatohepatitis (NASH). STATISTICAL TESTS: Spearman's rank test, Kruskal-Wallis test, Dunn's post-hoc test with Holm-Bonferroni P-value adjustment, receiver operating characteristic curve analysis. A P-value <0.05 was considered statistically significant. RESULTS: Histological steatosis grade correlated significantly with PDFFMRS (rs  = 0.66, P < 0.001), PDFFMRI-M (rs  = 0.68, P < 0.001), and PDFFDixon (rs  = 0.67, P < 0.001), whereas no correlation was found with CAP. MRE and IVIM diffusion and perfusion significantly correlated with disease activity (rs  = 0.55, P < 0.001, rs  = -0.40, P = 0.016, rs  = -0.37, P = 0.027, respectively) and fibrosis (rs  = 0.55, P < 0.001, rs  = -0.46, P = 0.0051; rs  = -0.53, P < 0.001, respectively). MRE and IVIM diffusion had the highest area-under-the-curve for distinction between simple steatosis and NASH (0.79 and 0.73, respectively). DATA CONCLUSION: Multiparametric MRI is a promising method for noninvasive, accurate, and sensitive distinction between simple hepatic steatosis and NASH, as well as for the assessment of steatosis and fibrosis severity. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: 2.


Assuntos
Técnicas de Imagem por Elasticidade , Hepatopatia Gordurosa não Alcoólica , Biópsia , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Estudos Prospectivos
8.
NMR Biomed ; 33(1): e4174, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31696585

RESUMO

Several biological processes are involved in dementia, and fibrillar aggregation of misshaped endogenous proteins appears to be an early hallmark of neurodegenerative disease. A recently developed means of studying neurodegenerative diseases is magnetic resonance elastography (MRE), an imaging technique investigating the mechanical properties of tissues. Although mechanical changes associated with these diseases have been detected, the specific signal of fibrils has not yet been isolated in clinical or preclinical studies. The current study aims to exploit the fractal-like properties of fibrils to separate them from nonaggregated proteins using a multi-frequency MRE power law exponent in a phantom study. Two types of fibril, α-synuclein (α-Syn) and amyloid-ß (Aß), and a nonaggregated protein, bovine serum albumin, used as control, were incorporated in a dedicated nondispersive agarose phantom. Elastography was performed at multiple frequencies between 400 and 1200 Hz. After 3D-direct inversion, storage modulus (G'), phase angle (ϕ), wave speed and the power law exponent (y) were computed. No significant changes in G' and ϕ were detected. Both α-Syn and Aß inclusions showed significantly higher y values than control inclusions (P = 0.005) but did not differ between each other. The current phantom study highlighted a specific biomechanical effect of α-Syn and Aß aggregates, which was better captured with the power law exponent derived from multi-frequency MRE than with single frequency-derived parameters.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Técnicas de Imagem por Elasticidade , Agregados Proteicos , alfa-Sinucleína/metabolismo , Animais , Bovinos , Elasticidade , Fluorescência , Humanos , Imagens de Fantasmas , Soroalbumina Bovina/química
9.
NMR Biomed ; 33(1): e4138, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31664745

RESUMO

In MR elastography (MRE), zeroth moment balanced motion-encoding gradients (MEGs) are incorporated into MRI sequences to induce a phase shift proportional to the local displacement caused by external actuation. To maximize the signal-to-noise ratio (SNR), fractional encoding is employed, i.e., the MEG duration is reduced below the wave period. Here, gradients encode primarily the velocity of the motion-reducing encoding efficiency. Thus, in GRE-MRE, T2 * decay and motion sensitivity have to be balanced, imposing a lower limit on repetition times (TRs). We propose to use a single trapezoidal gradient, a "unipolar gradient", to directly encode spin displacement. Such gradients cannot be used in conventional sequences as they exhibit a large zeroth moment and dephase magnetization. By time-reversing a spoiled SSFP sequence, the spoiling gradient becomes an efficient unipolar MEG. The proposed "unipolar MRE" technique benefits from this approach in three ways: first, displacement encoding is split over multiple TRs increasing motion sensitivity; second, spoiler and MEG coincide, allowing a reduction in TR; third, motion sensitivity of a typical unipolar lobe is of an order of magnitude higher than a bipolar MEG of equal duration. In this work, motion encoding using unipolar MRE is analyzed using the extended phase graph (EPG) formalism with a periodic motion propagator. As an approximation, the two-transverse TR approximation for diffusion-weighted SSFP is extended to incorporate cyclic motion. A complex encoding efficiency metric is introduced to compare the displacement fields of unipolar and conventional GRE-MRE sequences in both magnitude and phase. The derived theoretical encoding equations are used to characterize the proposed sequence using an extensive parameter study. Unipolar MRE is validated against conventional GRE-MRE in a phantom study showing excellent agreement between measured displacement fields. In addition, unipolar MRE yields significantly increased octahedral shear strain-SNR relative to conventional GRE-MRE and allows for the recovery of high stiffness inclusions, where conventional GRE-MRE fails.


Assuntos
Técnicas de Imagem por Elasticidade , Imageamento por Ressonância Magnética , Análise Numérica Assistida por Computador , Simulação por Computador , Movimento (Física) , Imagens de Fantasmas
10.
Scand J Gastroenterol ; 55(7): 848-859, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32684060

RESUMO

BACKGROUND AND AIMS: Accurate biomarkers for quantifying liver fibrosis are important for clinical practice and trial end-points. We compared the diagnostic performance of magnetic resonance imaging (MRI), including gadoxetate-enhanced MRI and 31P-MR spectroscopy, with fibrosis stage and serum fibrosis algorithms in a clinical setting. Also, in a subset of patients, MR- and transient elastography (MRE and TE) was evaluated when available. METHODS: Patients were recruited prospectively if they were scheduled to undergo liver biopsy on a clinical indication due to elevated liver enzyme levels without decompensated cirrhosis. Within a month of the clinical work-up, an MR-examination and liver needle biopsy were performed on the same day. Based on late-phase gadoxetate-enhanced MRI, a mathematical model calculated hepatobiliary function (relating to OATP1 and MRP2). The hepatocyte gadoxetate uptake rate (KHep) and the normalised liver-to-spleen contrast ratio (LSC_N10) were also calculated. Nine serum fibrosis algorithms were investigated (GUCI, King's Score, APRI, FIB-4, Lok-Index, NIKEI, NASH-CRN regression score, Forns' score, and NAFLD-fibrosis score). RESULTS: The diagnostic performance (AUROC) for identification of significant fibrosis (F2-4) was 0.78, 0.80, 0.69, and 0.78 for MRE, TE, LSC_N10, and GUCI, respectively. For the identification of advanced fibrosis (F3-4), the AUROCs were 0.93, 0.84, 0.81, and 0.82 respectively. CONCLUSION: MRE and TE were superior for non-invasive identification of significant fibrosis. Serum fibrosis algorithms developed for specific liver diseases are applicable in this cohort of diverse liver diseases aetiologies. Gadoxetate-MRI was sufficiently sensitive to detect the low function losses associated with fibrosis. None was able to efficiently distinguish between stages within the low fibrosis stages.Lay summaryExcessive accumulation of scar tissue, fibrosis, in the liver is an important aspect in chronic liver disease. To replace the invasive needle biopsy, we have explored non-invasive methods to assess liver fibrosis. In our study we found that elastographic methods, which assess the mechanical properties of the liver, are superior in assessing fibrosis in a clinical setting. Of interest from a clinical trial point-of-view, none of the tested methods was sufficiently accurate to distinguish between adjacent moderate fibrosis stages.


Assuntos
Biomarcadores/sangue , Técnicas de Imagem por Elasticidade , Cirrose Hepática/sangue , Cirrose Hepática/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Área Sob a Curva , Feminino , Humanos , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC , Suécia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa