Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Molecules ; 28(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838799

RESUMO

The structure and interaction parameters of the water-soluble cholesterol-based surfactant, Chobimalt, are investigated by small-angle neutron and X-ray scattering techniques. The obtained data are analyzed by a model-independent approach applying the inverse Fourier transformation procedure as well as considering a model fitting procedure, using a core-shell form factor and hard-sphere structure factor. The analysis reveals the formation of the polydisperse spherical or moderately elongated ellipsoidal shapes of the Chobimalt micelles with the hard sphere interaction in the studied concentration range 0.17-6.88 mM. The aggregation numbers are estimated from the micelle geometry observed by small-angle scattering and are found to be in the range of 200-300. The low pH of the solution does not have a noticeable effect on the structure of the Chobimalt micelles. The critical micelle concentrations of the synthetic surfactant Chobimalt in water and in H2O-HCl solutions were obtained according to fluorescence measurements as ~3 µM and ~2.5 µM, respectively. In-depth knowledge of the basic structural properties of the detergent micelles is necessary for further applications in bioscience and biotechnology.


Assuntos
Detergentes , Micelas , Detergentes/química , Tensoativos/química , Água/química , Colesterol , Soluções
2.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430405

RESUMO

Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), or systemic amyloidosis, are characterized by the specific protein transformation from the native state to stable insoluble deposits, e.g., amyloid plaques. The design of potential therapeutic agents and drugs focuses on the destabilization of the bonds in their beta-rich structures. Surprisingly, ferritin derivatives have recently been proposed to destabilize fibril structures. Using atomic force microscopy (AFM) and fluorescence spectrophotometry, we confirmed the destructive effect of reconstructed ferritin (RF) and magnetoferritin (MF) on lysosome amyloid fibrils (LAF). The presence of iron was shown to be the main factor responsible for the destruction of LAF. Moreover, we found that the interaction of RF and MF with LAF caused a significant increase in the release of potentially harmful ferrous ions. Zeta potential and UV spectroscopic measurements of LAF and ferritin derivative mixtures revealed a considerable difference in RF compared to MF. Our results contribute to a better understanding of the mechanism of fibril destabilization by ferritin-like proteins. From this point of view, ferritin derivatives seem to have a dual effect: therapeutic (fibril destruction) and adverse (oxidative stress initiated by increased Fe2+ release). Thus, ferritins may play a significant role in various future biomedical applications.


Assuntos
Amiloide , Muramidase , Amiloide/metabolismo , Muramidase/química , Ferritinas , Ferro/metabolismo
3.
Nanotechnology ; 32(31)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33853053

RESUMO

A set of cerium dioxide nanoparticles (CeO2NPs) was synthesized by precipitation in water-alcohol solutions under conditions when the physical-chemical parameters of synthesized NPs were controlled by changing the ratio of the reaction components. The size of CeO2NPs is controlled largely by the dielectric constant of the reaction solution. An increase of the percentage of Ce3+ions at the surface was observed with a concomitant reduction of the NP sizes. All synthesized CeO2NPs possess relatively high positive values of zeta-potential (ζ > 40 mV) suggesting good stability in aqueous suspensions. Analysis of the valence- and size-dependent rate of hydrogen peroxide decomposition revealed that catalase/peroxidase-like activity of CeO2NPs is higher at a low percentage of Ce3+at the NP surface. In contrast, smaller CeO2NPs with a higher percentage of Ce3+at the NP surface display a higher oxidase-like activity.

4.
J Biol Phys ; 44(3): 237-243, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29740739

RESUMO

The interaction of amyloid ß-peptide (Aß) with the iron-storage protein ferritin was studied in vitro. We have shown that Aß during fibril formation process is able to reduce Fe(III) from the ferritin core (ferrihydrite) to Fe(II). The Aß-mediated Fe(III) reduction yielded a two-times-higher concentration of free Fe(II) than the spontaneous formation of Fe(II) by the ferritin itself. We suggest that Aß can also act as a ferritin-specific metallochaperone-like molecule capturing Fe(III) from the ferritin ferrihydrite core. Our observation may partially explain the formation of Fe(II)-containing minerals in human brains suffering by neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/química , Ferritinas/metabolismo , Ferro/metabolismo , Peptídeos beta-Amiloides/química , Ferritinas/química , Humanos , Oxirredução
5.
Biochim Biophys Acta Mol Basis Dis ; 1863(2): 607-619, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27865910

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and currently there is no efficient treatment. The classic drug-design strategy based on the "one-molecule-one-target" paradigm was found to be ineffective in the case of multifactorial diseases like AD. A novel multi-target-directed ligand strategy based on the assumption that a single compound consisting of two or more distinct pharmacophores is able to hit multiple targets has been proposed as promising. Herein, we investigated 7-methoxytacrine - memantine heterodimers developed with respect to the multi-target-directed ligand theory. The spectroscopic, microscopic and cell culture methods were used for systematic investigation of the interference of the heterodimers with ß-secretase (BACE1) activity, Aß peptide amyloid fibrillization (amyloid theory) and interaction with M1 subtype of muscarinic (mAChRs), nicotinic (nAChRs) acetylcholine receptors (cholinergic theory) and N-methyl-d-aspartate receptors (NMDA) (glutamatergic theory). The drug-like properties of selected compounds have been evaluated from the point of view of blood-brain barrier penetration and cell proliferation. We have confirmed the multipotent effect of novel series of compounds. They inhibited effectively Aß peptide amyloid fibrillization and affected the BACE1 activity. Moreover, they have AChE inhibitory potency but they could not potentiate cholinergic transmission via direct interaction with cholinergic receptors. All compounds were reported to act as an antagonist of both M1 muscarinic and muscle-type nicotinic receptors. We have found that 7-methoxytacrine - memantine heterodimers are able to hit multiple targets associated with Alzheimer's disease and thus, have a potential clinical impact for slowing or blocking the neurodegenerative process related to this disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amantadina/farmacologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Tacrina/análogos & derivados , Doença de Alzheimer/metabolismo , Amantadina/análogos & derivados , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Células CHO , Colinesterases/metabolismo , Cricetulus , Dimerização , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Terapia de Alvo Molecular , Receptor Muscarínico M1/antagonistas & inibidores , Receptor Muscarínico M1/metabolismo , Receptores Colinérgicos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Tacrina/química , Tacrina/farmacologia , Xenopus
6.
Neurochem Res ; 39(8): 1502-10, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24858241

RESUMO

It is well known that misfolded peptides/proteins can play a role in processes of normal ageing and in the pathogenesis of many diseases including Alzheimer's disease. Previously, we evaluated samples of cerebrospinal fluid from patients with Alzheimer's disease and multiple sclerosis by means of thioflavin-T-based fluorescence. We observed attenuated effects of magnetite nanoparticles operated via anti-aggregation actions on peptides/proteins from patients with Alzheimer's disease but not from those with multiple sclerosis when compared to age-related controls. In this study, we have evaluated the in vitro effects of anti-aggregation operating ferrofluid and phytoalexin spirobrassinin in the cerebrospinal fluid of patients with multiple sclerosis and Alzheimer's disease. We have found significant differences in native fluorescence (λ excitation = 440 nm, λ emission = 485 nm) of samples among particular groups (young controls < multiple sclerosis, Alzheimer's disease < old controls). Differences among groups were observed also in thioflavin-T-based fluorescence (young controls = multiple sclerosis < Alzheimer's disease < old controls) and the most marked change from native to thioflavin-T-based fluorescence was found in young controls (28-40 years old people). Both ferrofluid and spirobrassinin evoked drops in thioflavin-T-based fluorescence; however, ferrofluid was more efficient in old controls (54-75 years old people) and spirobrassinin in multiple sclerosis patients, both compared to young controls. The results are discussed especially in relation to aggregated peptides/proteins and liposoluble fluorescent products of lipid peroxidation. Based on the significant effect of spirobrassinin in vitro, we suggest that spirobrassinin may be of therapeutic value in multiple sclerosis.


Assuntos
Envelhecimento/líquido cefalorraquidiano , Cloretos/líquido cefalorraquidiano , Compostos Férricos/líquido cefalorraquidiano , Compostos Ferrosos/líquido cefalorraquidiano , Esclerose Múltipla/líquido cefalorraquidiano , Compostos de Espiro/líquido cefalorraquidiano , Tiazóis/líquido cefalorraquidiano , Adulto , Idoso , Benzotiazóis , Feminino , Fluorescência , Corantes Fluorescentes/análise , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico
7.
Proteins ; 81(6): 994-1004, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23280648

RESUMO

The amyloidoses are diseases associated with nonnative folding of proteins and characterized by the presence of protein amyloid aggregates. The ability of quercetin, resveratrol, caffeic acid, and their equimolar mixtures to affect amyloid aggregation of hen egg white lysozyme in vitro was detected by Thioflavin T fluorescence assay. The anti-amyloid activities of tested polyphenols were evaluated by the median depolymerization concentrations DC50 and median inhibition concentrations IC50 . Single substances are more efficient (by at least one order) in the depolymerization of amyloid aggregates assay than in the inhibition of the amyloid formation with IC50 in 10(-4) to 10(-5) M range. Analyzed mixture samples showed synergic or antagonistic effects in both assays. DC50 values ranged from 10(-5) to 10(-8) M and IC50 from 10(-5) to 10(-9) M, respectively. We observed that certain mixtures of studied polyphenols can synergistically inhibit production of amyloids aggregates and are also effective in depolymerization of the aggregates. Synergic or antagonistic effects of studied mixtures were correlated with protein-small ligand docking studies and AFM results. Differences in these activities could be explained by binding of each polyphenol to a different amino acid sequence within the protein. Our results indicate that synergic/antagonistic anti-amyloid effects of studied mixtures depend on the selective binding of polyphenols to the known amyloidogenic sequences in the lysozyme chain. Our findings of the effective reduction of amyloid aggregation of lysozyme by polyphenol mixtures in vitro are of the utter physiological relevance considering the bioavailability and low toxicity of tested phenols.


Assuntos
Amiloide/antagonistas & inibidores , Ácidos Cafeicos/metabolismo , Muramidase/metabolismo , Quercetina/metabolismo , Estilbenos/metabolismo , Vinho , Amiloide/metabolismo , Amiloide/ultraestrutura , Animais , Antioxidantes/metabolismo , Galinhas , Modelos Moleculares , Polifenóis/metabolismo , Resveratrol , Vinho/análise
8.
Biomacromolecules ; 14(4): 1035-43, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23425034

RESUMO

While amyloid-related diseases are at the center of intense research efforts, no feasible cure is currently available for these diseases. The experimental and computational techniques were used to study the ability of glyco-acridines to prevent lysozyme amyloid fibrillization in vitro. Fluorescence spectroscopy and atomic force microscopy have shown that glyco-acridines inhibit amyloid aggregation of lysozyme; the inhibition efficiency characterized by the half-maximal inhibition concentration IC50 was affected by the structure and concentration of the derivative. We next investigated relationship between the binding affinity and the inhibitory activity of the compounds. The semiempirical quantum PM6-DH+ method provided a good correlation pointing to the importance of quantum effects on the binding of glyco-acridine derivatives to lysozyme. The contribution of linkers may be explained by the valence bond theory. Our data provide a basis for the development of new small molecule inhibitors effective in therapy of amyloid-related diseases.


Assuntos
Acridinas/metabolismo , Amiloide/metabolismo , Muramidase/metabolismo , Acridinas/química , Amiloide/antagonistas & inibidores , Amiloide/química , Peptídeos beta-Amiloides/metabolismo , Amiloidose , Humanos , Muramidase/química , Conformação Proteica , Relação Estrutura-Atividade
9.
Gen Physiol Biophys ; 32(2): 209-14, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23479452

RESUMO

Presence of protein amyloid deposits is associated with pathogenesis of amyloid-related diseases. Insulin amyloid aggregates have been reported in a patient with diabetes undergoing treatment by injection of insulin. We have investigated the interference of insulin amyloid aggregation with two Fe3O4-based magnetic fluids. The magnetic fluids are able to inhibit insulin amyloid fibrillization and promote disassembly of amyloid fibrils. The cytotoxic effect of amyloid fibrils is attenuated in presence of magnetic fluids probably due to reduction of the fibrils. We suggest that present findings propose the potential use of Fe3O4-based magnetic fluids as the therapeutic agents targeting insulin-associating amyloidosis.


Assuntos
Amiloide/química , Compostos Férricos/química , Compostos Férricos/toxicidade , Fibroblastos/citologia , Insulina/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos/efeitos da radiação , Humanos , Dose Letal Mediana , Campos Magnéticos , Soluções
10.
Molecules ; 18(2): 2397-418, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23429378

RESUMO

A structural series of 7-MEOTA-adamantylamine thioureas was designed, synthesized and evaluated as inhibitors of human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE). The compounds were prepared based on the multi-target-directed ligand strategy with different linker lengths (n = 2-8) joining the well-known NMDA antagonist adamantine and the hAChE inhibitor 7-methoxytacrine (7-MEOTA). Based on in silico studies, these inhibitors proved dual binding site character capable of simultaneous interaction with the peripheral anionic site (PAS) of hAChE and the catalytic active site (CAS). Clearly, these structural derivatives exhibited very good inhibitory activity towards hBChE resulting in more selective inhibitors of this enzyme. The most potent cholinesterase inhibitor was found to be thiourea analogue 14 (with an IC50 value of 0.47 µM for hAChE and an IC50 value of 0.11 µM for hBChE, respectively). Molecule 14 is a suitable novel lead compound for further evaluation proving that the strategy of dual binding site inhibitors might be a promising direction for development of novel AD drugs.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amantadina/uso terapêutico , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/uso terapêutico , Dimerização , Modelos Moleculares , Tacrina/análogos & derivados , Acetilcolinesterase/metabolismo , Amantadina/síntese química , Amantadina/química , Amantadina/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Ensaios Enzimáticos , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Padrões de Referência , Tacrina/síntese química , Tacrina/química , Tacrina/farmacologia , Tacrina/uso terapêutico , Tioureia/química
11.
Colloids Surf B Biointerfaces ; 227: 113356, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37201447

RESUMO

Cerium dioxide nanoparticles (CeO2 NPs) are used increasingly in nanotechnology and particularly in biotechnology and bioresearch. Thus, CeO2 NPs have been successfully tested in vitro as a potential therapeutic agent for various pathologies associated with oxidative stress, including the formation of protein amyloid aggregates. In this study, to increase the anti-amyloidogenic efficiency and preserve the antioxidant potential, the surface of the synthesized CeO2 NPs is modified with a nonionic, sugar-based surfactant, dodecyl maltoside (DDM), which is known for its high anti-amyloidogenic activity and biocompatibility. Dynamic light scattering and Fourier transform infrared spectroscopy demonstrated successful modification by DDM. The apparent hydrodynamic diameters of CeO2 NPs and DDM-modified NPs (CeO2@DDM NPs) are found to be ⁓180 nm and ⁓260 nm, respectively. A positive zeta potential value of + 30.5 mV for CeO2 NPs and + 22.5 mV for CeO2 @DDM NPs suggest sufficient stability and good dispersion of NPs in an aqueous solution. A combination of Thioflavin T fluorescence analysis and atomic force microscopy is used to assess the effect of nanoparticles on the formation of insulin amyloid fibrils. Results show that the fibrillization of insulin is inhibited by both, naked and modified NPs in a dose-dependent manner. However, while the IC50 of naked NPs is found to be ∼270 ± 13 µg/mL, the surface-modified NPs are 50% more efficient with IC50 equaled to 135 ± 7 µg/mL. In addition, both, the naked CeO2 NPs and DDM-modified NPs displayed an antioxidant activity expressed as oxidase-, catalase- and SOD-like activity. Therefore, the resulting nanosized material is very well suited to prove or disprove the hypothesis that oxidative stress plays a role in the formation of amyloid fibrils.


Assuntos
Cério , Insulinas , Nanopartículas , Amiloide , Nanopartículas/química , Cério/farmacologia , Cério/química , Proteínas Amiloidogênicas
12.
Int J Biol Macromol ; 251: 126331, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37579899

RESUMO

One of the most attractive approaches in biomedicine and pharmacy is the application of multifunctional materials. The mesoporous structure of clinoptilolite (CZ) absorbs various types of substances and can be used as a model for studying the carriers for targeted drug delivery with controlled release. CZ-dye composites are fabricated by incorporation into clinoptilolite pores commonly used dyes, aluminum phthalocyanine, zinc porphine, and hypericin. We examined and compared the effect of pure dyes and CZ-dye composites on insulin amyloidogenesis. The formation of insulin amyloid fibrils and the disassembly of preformed fibrils is significantly affected by any of the three compounds, however, the strongest effect is observed for aluminum phthalocyanine indicating a structurally-dependent anti-amyloidogenic activity of the dyes. The incorporation of dyes into CZ particles resulted in enhanced anti-amyloidogenic activity in comparison to pure CZ particles. The cell metabolic activity, biocompatibility and fluorescence biodistribution of the dyes entrapped in the composites were tested in vitro (U87 MG cells) and in vivo in the quail chorioallantoic membrane model. Considering the photoactive properties of the dyes used, we assume their applicability in photodiagnostics and photodynamic therapy. It can also be expected that their anti-amyloidogenic potential can be enhanced by photodynamic effect.

13.
ACS Appl Mater Interfaces ; 15(42): 49346-49361, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37826912

RESUMO

"Core/shell" nanocomposites based on magnetic magnetite (Fe3O4) and redox-active cerium dioxide (CeO2) nanoparticles (NPs) are promising in the field of biomedical interests because they can combine the ability of magnetic NPs to heat up in an alternating magnetic field (AMF) with the pronounced antioxidant activity of CeO2 NPs. Thus, this report is devoted to Fe3O4/CeO2 nanocomposites (NCPs) synthesized by precipitation of the computed amount of "CeO2-shell" on the surface of prefabricated Fe3O4 NPs. The X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy data validated the formation of Fe3O4/CeO2 "core/shell"-like NCPs, in which ultrafine CeO2 NPs with an average size of approximately 3-3.5 nm neatly surround Fe3O4 NPs. The presence of a CeO2 "shell" significantly increased the stability of Fe3O4/CeO2 NCPs in aqueous suspensions: Fe3O4/CeO2 NCPs with "shell thicknesses" of 5 and 7 nm formed highly stable magnetic fluids with ζ-potential values of >+30 mV. The magnetization values of Fe3O4/CeO2 NCPs decreased with a growing CeO2 "shell" around the magnetic NPs; however, the resulting composites retained the ability to heat efficiently in an AMF. The presence of a CeO2 "shell" generates a possibility to precisely regulate tuning of the maximum heating temperature of magnetic NCPs in the 42-50 °C range and stabilize it after a certain time of exposure to an AMF by changing the thickness of the "CeO2-shell". A great improvement was observed in both antioxidant and antiamyloidogenic activities. It was found that inhibition of insulin amyloid formation, expressed in IC50 concentration, using NCPs with a "shell thickness" of 7 nm was approximately 10 times lower compared to that of pure CeO2. For these NCPs, more than 2 times higher superoxide dismutase-like activity was observed. The coupling of both Fe3O4 and CeO2 results in higher bioactivity than either of them individually, probably due to a synergistic catalytic mechanism.


Assuntos
Antioxidantes , Nanocompostos , Antioxidantes/farmacologia , Nanocompostos/química , Óxido Ferroso-Férrico/química , Magnetismo , Fenômenos Magnéticos
14.
Biochim Biophys Acta ; 1810(4): 465-74, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21276838

RESUMO

BACKGROUND: Amyloid-related diseases (such as Alzheimer's disease or diabetes type II) are associated with self-assembly of protein into amyloid aggregates. METHODS: Spectroscopic and atomic force microscopy were used to determine the ability of acridines to affect amyloid aggregation of lysozyme. RESULTS: We have studied the effect of acridine derivatives on the amyloid aggregation of lysozyme to investigate the acridine structure-activity relationship. The activity of the effective planar acridines was characterized by the half-maximum depolymerization concentration DC(50) and half-maximal inhibition concentration IC(50). For the most effective acridine derivatives we examined their interaction with DNA and their effect on cell viability in order to investigate their eventual influence on cells. We thus identified planar acridine derivatives with intensive anti-amyloid activity (IC(50) and DC(50) values in micromolar range), low cytotoxicity and weak ability to interfere with the processes in the cell. CONCLUSIONS: Our findings indicate that both the planarity and the tautomerism of the 9-aminoacridine core together with the reactive nucleophilic thiosemicarbazide substitution play an important role in the anti-amyloid activities of studied derivatives. GENERAL SIGNIFICANCE: The present findings favor the application of the selected active planar acridines in the treatment of amyloid-related diseases.


Assuntos
Acridinas/química , Acridinas/farmacologia , Amiloide/antagonistas & inibidores , Amiloide/metabolismo , Muramidase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Galinhas , DNA/metabolismo , Humanos , Concentração Inibidora 50 , Relação Estrutura-Atividade
15.
Nanotechnology ; 23(5): 055101, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22238252

RESUMO

Pathogenesis of amyloid-related diseases is associated with the presence of protein amyloid deposits. Insulin amyloids have been reported in a patient with diabetes undergoing treatment by injection of insulin and causes problems in the production and storage of this drug and in pplication of insulin pumps. We have studied the interference of insulin amyloid fibrils with a series of 18 albumin magnetic fluids (MFBSAs) consisting of magnetite nanoparticles modified by different amounts of bovine serum albumin (w/w BSA/Fe3O4 from 0.005 up to 15). We have found that MFBSAs are able to destroy amyloid fibrils in vitro. The extent of fibril depolymerization was affected by nanoparticle physical-chemical properties (hydrodynamic diameter, zeta potential and isoelectric point) determined by the BSA amount present in MFBSAs. The most effective were MFBSAs with lower BSA/Fe3O4 ratios (from 0.005 to 0.1) characteristic of about 90% depolymerizing activity. For the most active magnetic fluids (ratios 0.01 and 0.02) the DC50 values were determined in the range of low concentrations, indicating their ability to interfere with insulin fibrils at stoichiometric concentrations. We assume that the present findings represent a starting point for the application of the active MFBSAs as therapeutic agents targeting insulin amyloidosis.


Assuntos
Amiloide/química , Insulina/química , Nanopartículas de Magnetita/química , Soroalbumina Bovina/química , Amiloide/metabolismo , Animais , Bovinos , Insulina/metabolismo , Tamanho da Partícula , Espectrometria de Fluorescência
16.
Biomedicines ; 10(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35625679

RESUMO

Oxidative stress is known to be associated with a number of degenerative diseases. A better knowledge of the interplay between oxidative stress and amyloidogenesis is crucial for the understanding of both, aging and age-related neurodegenerative diseases. Cerium dioxide nanoparticles (CeO2 NPs, nanoceria) due to their remarkable properties are perspective nanomaterials in the study of the processes accompanying oxidative-stress-related diseases, including amyloid-related pathologies. In the present work, we analyze the effects of CeO2 NPs of different sizes and Ce4+/Ce3+ ratios on the fibrillogenesis of insulin, SOD-like enzymatic activity, oxidative stress, biocompatibility, and cell metabolic activity. CeO2 NPs (marked as Ce1-Ce5) with controlled physical-chemical parameters, such as different sizes and various Ce4+/Ce3+ ratios, are synthesized by precipitation in water-alcohol solutions. All synthesized NPs are monodispersed and exhibit good stability in aqueous suspensions. ThT and ANS fluorescence assays and AFM are applied to monitor the insulin amyloid aggregation and antiamyloid aggregation activity of CeO2 NPs. The analyzed Ce1-Ce5 nanoparticles strongly inhibit the formation of insulin amyloid aggregates in vitro. The bioactivity is analyzed using SOD and MTT assays, Western blot, fluorescence microscopy, and flow cytometry. The antioxidative effects and bioactivity of nanoparticles are size- or valence-dependent. CeO2 NPs show great potential benefits for studying the interplay between oxidative stress and amyloid-related diseases, and can be used for verification of the role of oxidative stress in amyloid-related diseases.

17.
Front Mol Biosci ; 9: 955282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060240

RESUMO

The amyloidogenic self-assembly of many peptides and proteins largely depends on external conditions. Among amyloid-prone proteins, insulin attracts attention because of its physiological and therapeutic importance. In the present work, the amyloid aggregation of insulin is studied in the presence of cholesterol-based detergent, Chobimalt. The strategy to elucidate the Chobimalt-induced effect on insulin fibrillogenesis is based on performing the concentration- and time-dependent analysis using a combination of different experimental techniques, such as ThT fluorescence assay, CD, AFM, SANS, and SAXS. While at the lowest Chobimalt concentration (0.1 µM; insulin to Chobimalt molar ratio of 1:0.004) the formation of insulin fibrils was not affected, the gradual increase of Chobimalt concentration (up to 100 µM; molar ratio of 1:4) led to a significant increase in ThT fluorescence, and the maximal ThT fluorescence was 3-4-fold higher than the control insulin fibril's ThT fluorescence intensity. Kinetic studies confirm the dose-dependent experimental results. Depending on the concentration of Chobimalt, either (i) no effect is observed, or (ii) significantly, ∼10-times prolonged lag-phases accompanied by the substantial, ∼ 3-fold higher relative ThT fluorescence intensities at the steady-state phase are recorded. In addition, at certain concentrations of Chobimalt, changes in the elongation-phase are noticed. An increase in the Chobimalt concentrations also triggers the formation of insulin fibrils with sharply altered morphological appearance. The fibrils appear to be more flexible and wavy-like with a tendency to form circles. SANS and SAXS data also revealed the morphology changes of amyloid fibrils in the presence of Chobimalt. Amyloid aggregation requires the formation of unfolded intermediates, which subsequently generate amyloidogenic nuclei. We hypothesize that the different morphology of the formed insulin fibrils is the result of the gradual binding of Chobimalt to different binding sites on unfolded insulin. A similar explanation and the existence of such binding sites with different binding energies was shown previously for the nonionic detergent. Thus, the data also emphasize the importance of a protein partially-unfolded state which undergoes the process of fibrils formation; i.e., certain experimental conditions or the presence of additives may dramatically change not only kinetics but also the morphology of fibrillar aggregates.

18.
Colloids Surf B Biointerfaces ; 220: 112960, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36308885

RESUMO

Cerium oxide nanoparticles (CeO2 NPs) are well known for their application in various fields of industry, as well as in biology and medicine. Knowledge of synthesis schemes, physicochemical and morphological features of nanoscale CeO2 is important for assessing their antioxidant behavior and understanding the mechanism of oxidative stress and its consequences. The choice of the method of synthesis should be based on the possibility to choose the conditions and parameters for obtaining CeO2 with controlled dimensions and a ratio of Се3+/Се4+ on their surface. In this study, CeO2 NPs are synthesized by precipitation in mixed water-alcohol solutions at constant pH = 9. The properties of obtained NPs are studied using various methods of physical-chemical characterization such as X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and dynamic light scattering. The size of CeO2 NPs varied from 14 to 4.2 nm with increasing alcohol concentration, while the effect of constant pH during synthesis on the morphology of the particles was insignificant. The synthesized nanoparticles form highly stable aqueous suspensions since their zeta-potential is higher than + 40 mV. It is found that the ability of CeO2 NPs to self-stabilize is associated with the presence of hydrated Ce4+ ions on their surface. In vitro biological studies have shown that, regardless of particle size, CeO2 NPs have antioxidant potential, but smaller NPs with a higher percentage of Ce3+ on the surface had a more effective antioxidant effect. In addition, the size-depended activity of CeO2 NPs to inhibit the amyloid formation of insulin is demonstrated.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Antioxidantes/farmacologia , Cério/química , Nanopartículas/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química
19.
Colloids Surf B Biointerfaces ; 197: 111428, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33129101

RESUMO

Amphiphilic compounds, both detergents and lipids, are important tools for in vitro analysis of water-soluble and integral membrane proteins. A key question is whether these two groups of amphiphilic molecules use the same pathway to affect structural and functional integrity of proteins. In the present study, we tested the effect of non-ionic detergent dodecyl maltoside (DDM), two phospholipids, 1,2-dimyristoyl-sn-glycero-3- phosphocholine (DMPC), 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), and the detergent-phospholipid mixtures on insulin amyloidogenesis in vitro. Amyloidogenesis of insulin is significantly affected by DDM in a time-and dose-dependent manner, but only slightly affected by either of phospholipids. Addition of DHPC or DMPC to detergent does not alter the inhibiting pattern, suggesting that DDM preferably binds to insulin. The molecular modeling revealed that DDM and the phospholipids occupy equivalent binding sites. DDM, due to the presence of maltose with several oxygen atoms (hydroxylic, glycosidic and ring) is involved in more hydrogen bonds than DHPC or DMPC. Hydrophobic interactions are important factors to stabilize both, DDM and phospholipids in their binding sites. Our results indicate that certain detergents (applying DDM as an example) and selected phospholipids are not always interchangeable in their use to investigate the effect of amphiphilic compounds on the behavior of amyloid-prone proteins.


Assuntos
Detergentes , Fosfolipídeos , Amiloide , Proteínas Amiloidogênicas , Dimiristoilfosfatidilcolina , Insulina
20.
Anal Methods ; 13(36): 4174-4178, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34523621

RESUMO

Monitoring the aggregation of amyloid-prone proteins is critical for understanding the mechanism of amyloid fibril formation. Insulin, when dissolved in low pH buffer, has a surface tension of 61-64 mN m-1, as measured by the pendant drop technique. Formation of insulin amyloid fibrils resulted in the increase of the surface tension values up to 71.2-73.5 mN m-1. The kinetics of fibril formation and fibril morphology were validated by ThT fluorescence and AFM, respectively. The results demonstrate that monitoring the surface tension by the pendant drop technique is a valuable tool for the detection of insulin amyloid aggregation.


Assuntos
Amiloide , Insulina , Insulina Regular Humana , Cinética , Tensão Superficial
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa