Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 291: 84-96, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26712470

RESUMO

Modified epigenetic programming early in life is proposed to underlie the development of an adverse adult phenotype, known as the Developmental Origins of Health and Disease (DOHaD) concept. Several environmental contaminants have been implicated as modifying factors of the developing epigenome. This underlines the need to investigate this newly recognized toxicological risk and systematically screen for the epigenome modifying potential of compounds. In this study, we examined the applicability of the zebrafish embryo as a screening model for DNA methylation modifications. Embryos were exposed from 0 to 72 h post fertilization (hpf) to bisphenol-A (BPA), diethylstilbestrol, 17α-ethynylestradiol, nickel, cadmium, tributyltin, arsenite, perfluoroctanoic acid, valproic acid, flusilazole, 5-azacytidine (5AC) in subtoxic concentrations. Both global and site-specific methylation was examined. Global methylation was only affected by 5AC. Genome wide locus-specific analysis was performed for BPA exposed embryos using Digital Restriction Enzyme Analysis of Methylation (DREAM), which showed minimal wide scale effects on the genome, whereas potential informative markers were not confirmed by pyrosequencing. Site-specific methylation was examined in the promoter regions of three selected genes vasa, vtg1 and cyp19a2, of which vasa (ddx4) was the most responsive. This analysis distinguished estrogenic compounds from metals by direction and sensitivity of the effect compared to embryotoxicity. In conclusion, the zebrafish embryo is a potential screening tool to examine DNA methylation modifications after xenobiotic exposure. The next step is to examine the adult phenotype of exposed embryos and to analyze molecular mechanisms that potentially link epigenetic effects and altered phenotypes, to support the DOHaD hypothesis.


Assuntos
Metilação de DNA/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Compostos Benzidrílicos/toxicidade , Metilação de DNA/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Embrião não Mamífero , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/fisiologia , Metais Pesados/toxicidade , Fenóis/toxicidade , Esteroides/toxicidade , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/biossíntese
2.
Int J Mol Sci ; 17(11)2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27827847

RESUMO

Non-communicable diseases (NCDs) are a major cause of premature mortality. Recent studies show that predispositions for NCDs may arise from early-life exposure to low concentrations of environmental contaminants. This developmental origins of health and disease (DOHaD) paradigm suggests that programming of an embryo can be disrupted, changing the homeostatic set point of biological functions. Epigenetic alterations are a possible underlying mechanism. Here, we investigated the DOHaD paradigm by exposing zebrafish to subtoxic concentrations of the ubiquitous contaminant cadmium during embryogenesis, followed by growth under normal conditions. Prolonged behavioral responses to physical stress and altered antioxidative physiology were observed approximately ten weeks after termination of embryonal exposure, at concentrations that were 50-3200-fold below the direct embryotoxic concentration, and interpreted as altered developmental programming. Literature was explored for possible mechanistic pathways that link embryonic subtoxic cadmium to the observed apical phenotypes, more specifically, the probability of molecular mechanisms induced by cadmium exposure leading to altered DNA methylation and subsequently to the observed apical phenotypes. This was done using the adverse outcome pathway model framework, and assessing key event relationship plausibility by tailored Bradford-Hill analysis. Thus, cadmium interaction with thiols appeared to be the major contributor to late-life effects. Cadmium-thiol interactions may lead to depletion of the methyl donor S-adenosyl-methionine, resulting in methylome alterations, and may, additionally, result in oxidative stress, which may lead to DNA oxidation, and subsequently altered DNA methyltransferase activity. In this way, DNA methylation may be affected at a critical developmental stage, causing the observed apical phenotypes.


Assuntos
Cádmio/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Comportamento Exploratório/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética , Adenosina/análogos & derivados , Adenosina/antagonistas & inibidores , Adenosina/metabolismo , Animais , Cátions Bivalentes , Metilação de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Embrião não Mamífero , Desenvolvimento Embrionário/genética , Epigênese Genética/efeitos dos fármacos , Etionina/análogos & derivados , Etionina/antagonistas & inibidores , Etionina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Estresse Oxidativo , Fenótipo , Peixe-Zebra/embriologia
3.
Nat Commun ; 11(1): 5432, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116134

RESUMO

Adeno-associated virus (AAV) forms the basis for several commercial gene therapy products and for countless gene transfer vectors derived from natural or synthetic viral isolates that are under intense preclinical evaluation. Here, we report a versatile pipeline that enables the direct side-by-side comparison of pre-selected AAV capsids in high-throughput and in the same animal, by combining DNA/RNA barcoding with multiplexed next-generation sequencing. For validation, we create three independent libraries comprising 183 different AAV variants including widely used benchmarks and screened them in all major tissues in adult mice. Thereby, we discover a peptide-displaying AAV9 mutant called AAVMYO that exhibits superior efficiency and specificity in the musculature including skeletal muscle, heart and diaphragm following peripheral delivery, and that holds great potential for muscle gene therapy. Our comprehensive methodology is compatible with any capsids, targets and species, and will thus facilitate and accelerate the stratification of optimal AAV vectors for human gene therapy.


Assuntos
Proteínas do Capsídeo/genética , Dependovirus/genética , Vetores Genéticos , Músculos/metabolismo , Músculos/virologia , Animais , Capsídeo , Código de Barras de DNA Taxonômico , Feminino , Biblioteca Gênica , Terapia Genética/métodos , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa