Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Ecotoxicol Environ Saf ; 190: 110129, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31884327

RESUMO

Profenofos insecticide is one of the most broadly used organophosphorus pesticides causing the contamination of soil and groundwater. Since dissolved oxygen concentration in groundwater is limited, this study aimed to investigate profenofos biodegradation and detoxification under aerobic and anoxic conditions using the profenofos-degrading Pseudomonas plecoglossicida strain PF1 (PF1). Anoxic biodegradation under the presence of nitrate was the focus. The results showed that profenofos at 10-150 mg/L was degraded under aerobic and anoxic conditions with removal efficiencies of 38-55% and 27-45%, respectively. Kinetic analysis following the Michaelis-Menten model revealed that the maximum substrate degradation rates and the Michaelis constants were 13.07 and 8.92 mg/L/d and 92.07 and 84.76 mg/L under aerobic and anoxic conditions, respectively. The culture preferred an aerobic environment resulting in better biodegradation performance. During the degradation experiment, 4-bromo-2-chlorophenol and 1,1-dimethylethylphenol were detected as profenofos biodegradation intermediate products. Microbial toxicity, phytotoxicity, and cytogenotoxicity assays showed that the toxicity of the contaminated water significantly decreased after both aerobic and anoxic biodegradation by PF1. The results from this study indicated that PF1 has the potential for bioremediation in a profenofos-contaminated environment under the presence or absence of oxygen.


Assuntos
Biodegradação Ambiental , Inseticidas/metabolismo , Organotiofosfatos/metabolismo , Pseudomonas/metabolismo , Animais , Clorofenóis , Besouros/metabolismo , Água Subterrânea , Inativação Metabólica , Cinética , Nitratos , Oxigênio/metabolismo , Praguicidas
2.
Water Sci Technol ; 79(5): 1007-1016, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31025981

RESUMO

Occurrence of silver nanoparticles (AgNPs) in wastewater treatment systems could impact the ammonia oxidation (AO). This study investigated the reduction of AgNPs and dissociated silver ion (Ag+) toxicity on nitrifying sludge using cell entrapment technique. Three entrapment materials, including barium alginate (BA), polyvinyl alcohol (PVA), and a mixture of polyvinyl alcohol and barium alginate (PVA-BA), were applied. The BA beads provided the highest reduction of silver toxicity (up to 90%) and durability. Live/dead assays showed fatality of entrapped cells after exposure to AgNPs and Ag+. The maximum AO rate of the BA-entrapped cells was 5.6 mg-N/g-MLSS/h. The AO kinetics under the presence of silver followed an uncompetitive inhibition kinetic model. The experiments with AgNPs and Ag+ gave the apparent maximum AO rates of 4.2 and 4.8 mg-N/g-MLSS/h, respectively. The apparent half-saturation constants of the BA-entrapped cells under the presence of silver were 10.5 to 13.4 mg/L. Scanning electron microscopic observation coupled with energy-dispersive X-ray spectroscopy indicated no silver inside the beads. This elucidates that the silver toxicity can be reduced by preventing silver penetration through the porous material, leading to less microbial cell damage. This study revealed the potential of the entrapment technology for mitigating the effect of silver species on nitrification.


Assuntos
Amônia/metabolismo , Nanopartículas Metálicas/toxicidade , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental/efeitos dos fármacos , Nitrificação , Esgotos , Prata
3.
Rocz Panstw Zakl Hig ; 65(4): 291-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25526574

RESUMO

BACKGROUND: Chlorpyrifos and profenofos are organophosphate pesticides (OPPs), we studied exposure and urinary metabolites in an agricultural area in the northeastern of Thailand during the chili-growing season (March - April) in 2012. OBJECTIVE: This study was designed to assess pesticide exposure concentration through dermal and inhalation pathways and to find and depict a relationship between urinary metabolites and means of exposure. MATERIALS AND METHODS: To estimate the pesticides exposure concentration, dermal wipes (hand, face, and feet), dermal patches and air samples were collected from 38 chili farmers. The morning void of pre and post application urine samples was an indicator of biological monitoring in the study which derived from 39 chili farmers. RESULTS: Chlorpyrifos and profenofos residues were detected on dermal patches, face wipes, and hand wipe samples, while no significant residues were found on the feet. Using a personal air sampling technique, all air samples detected pesticide residues. However, significant correlation between dermal pesticide exposure concentration and inhalation was not found (p>0.05). For urinary metabolite levels, there was a relationship between the first pre application morning void and post application morning void (p < 0.05); similar to the association between the first pre application morning void and the second post application morning void (p < 0.05). The main relationship between pesticide exposure and urinary metabolite was found to have been relevant to dermal exposure (r= 0.405; p < 0.05). CONCLUSIONS: The results of this study could suggested that public health education training programs, including the use of appropriate personal protective equipment (PPE), should be offered for the chili growing farmers in order to improve their ability to properly use pesticides. KEY WORDS: pesticide exposure, chili farmers, urinary metabolites, organophosphate pesticides.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análise , Ácido 2,4-Diclorofenoxiacético/urina , Inseticidas/análise , Inseticidas/urina , Organotiofosfatos/análise , Organotiofosfatos/urina , Agricultura , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/urina , Biomarcadores , Estudos de Coortes , Produtos Agrícolas , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Absorção Cutânea , Tailândia
4.
Water Res ; 261: 121994, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38955037

RESUMO

Biological activated carbon filter (BAC) is one of the most effective technologies for removing disinfection by-product (DBP) precursors from water. Biochar is a lower-cost medium that has the potential to replace granular activated carbon in BAC applications, thus leading to the development of biological biochar filter (BCF). This study compared BCF with BAC for the removal of DBP precursors using column experiments. Both BCF and BAC achieved the removal of DBP precursors, resulting in concentrations of all DBP formation potential below the World Health Organization guideline values for drinking water. Bromodichloromethane and unknown DBP precursor removal by BCF was comparable to that by BAC. However, BAC removed more chloroform and dichloroacetontrile precursors than BCF. For microbial community analysis, cell numbers in a bottom layer (inlet) of BCF and BAC columns were higher than those in the top layer. The abundances of Nordella and a microbial genus from Burkholderiaceae at the bottom layer showed a strong correlation to the number of DBP precursors removed and were comparable in BCF and BAC. This finding likely contributes to the similarities between DBPs species removed and the removal performances of some known and unknown DBP precursors by BCF and BAC. Overall results from this study revealed that biochar can be served as a low-cost and sustainable replacement of activated carbon in water filter for DBP precursor removal.

5.
Environ Pollut ; : 124456, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942273

RESUMO

Triclocarban (TCC), an antibacterial agent commonly used in personal care products, is one of the top ten contaminants of emerging concern in various environmental media, including soil and contaminated water in vadose zone. This study aimed to investigate TCC-contaminated water remediation using biochar-immobilized bacterial cells. Pseudomonas fluorescens strain MC46 (MC46), an efficient TCC-degrading isolate, was chosen, whereas agro-industrial carbonized waste as biochar was directly used as a sustainable cell immobilization carrier. According to the long-term TCC removal performance results (160 d), the biochar-immobilized cells consistently exhibited high TCC removal efficiencies (84-97%), whereas the free MC46 removed TCC for 76-94%. At 100 days, the detachment of the MC46 cells from the immobilized cell column was observed. The micro-Fourier-transform infrared spectroscopy results indicated that extracellular polymeric substance (EPS) was produced, but polysaccharide and protein fractions were washed out of the column. The lipid fraction of EPS adhered to the biochar, promoting TCC sorption for long-term treatment. The shortening of MC46 cells improved the tolerance of TCC toxicity. The TCC-contaminated water was successfully detoxified by the biochar-immobilized MC46 cells. Overall, the waste-derived biochar-immobilized cell system proposed in this study for the removal of emerging contaminants, including TCC, is efficient, economical, and aligned with the sustainable development concept of value-added utilization of waste.

6.
Sci Total Environ ; 879: 163037, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37001270

RESUMO

Triclocarban (TCC) has been used in consumer products and is a widespread contaminant in municipal wastewater treatment systems that ultimately accumulates in natural receiving water and soil. This work aims to apply an innovative hybrid moving entrapped bead activated sludge reactor (named "HyMER") that integrates entrapped TCC-degrading microbes and freely suspended activated sludge to treat TCC-contaminated wastewater. A previously isolated TCC-degrading bacterium (Pseudomonas fluorescens strain MC46, called MC46) and barium alginate entrapment were applied. The synthetic TCC-contaminated wastewater treatment (with TCC concentration of 10 mg/L) was performed using 20-cycle fed-batch reactor operation with feeding times of 12 and 24 h and cycle times of 13 and 25 h. The results indicated that the HyMER effectively reduced chemical oxygen demand by up to 80 and 95 % and TCC by up to 53 and 83 %, respectively, with feeding times of 12 and 24 h. Three TCC degradation intermediate products were found-3,4-dichloroaniline, 4-chloroaniline, and aniline. Scanning electron microscopic analysis revealed shorter cells and bacterial appendage development as cell adaptations against TCC and its intermediates. The live/dead assay indicated high survival of entrapped MC46 in toxic conditions, with up to 84 % viable cells. Based on computational fluid dynamic analysis, no entrapped cell agglomeration showed in the reactor, indicating the potential application of HyMER for real wastewater treatment. These results exhibit the feasibility of HyMER and its applicability for future toxic wastewater treatment.


Assuntos
Pseudomonas fluorescens , Purificação da Água , Esgotos/microbiologia , Águas Residuárias , Purificação da Água/métodos , Pseudomonas fluorescens/metabolismo , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos
7.
Environ Technol ; 33(19-21): 2319-28, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23393973

RESUMO

This study aims to improve decentralized hospital wastewater treatment inhibited by disinfectants by using calcium alginate cell entrapment technique. The effects of disinfectant types (glutaraldehyde, povidone iodine (PI) and a potassium hydroxide solution) and disinfectant concentrations, cell entrapment conditions (cell-to-matrix ratios) and cell loadings were investigated. The batch experiments were conducted using synthetic wastewater with initial chemical oxygen demand (COD) of approximately 370 mg/L and acclimated activated sludge. Among three disinfectants, PI substantially affected the wastewater treatment efficiency (inhibition of 40%) while other disinfectants exhibited inhibition effects of less than 9%. The results also indicated that the entrapped cells obviously performed better than the free cells. The cell-to-matrix ratio of 1:20 (v/v) provided the highest treatment efficiency of 86% (inhibition of 9%) while the free cell system had inhibition of 47%. The system at the entrapped cell loading of 2000 mg/L performed the highest COD removal of 62% for ten-cycle sequencing batch operation. A scanning electron microscope image provided information on entrapped cell structure subjected to the disinfectant.


Assuntos
Reatores Biológicos , Desinfetantes , Purificação da Água , Glutaral , Hospitais , Hidróxidos , Cinética , Compostos de Potássio , Povidona-Iodo , Águas Residuárias
8.
Sci Total Environ ; 820: 153299, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35074379

RESUMO

Biochar is an alternative adsorbent, with similar characteristics to activated carbon, that can be applied to water treatment to remove dissolved organic matter (DOM) as disinfection by-product (DBP) precursors with comparable efficiency and better cost-effectiveness and sustainability relative to commercial alternatives. We applied non-targeted analysis with Orbitrap mass spectrometry to investigate changes in molecular DOM and DBP formation after treating DOM-containing water with biochar. Two surface water sources, Phong River (PR) in Khon Kaen, Thailand and Suwannee river (SR), USA, were tested using three types of eucalyptus-derived biochar (i.e., KOH-modified, calcined, and both) were selected as adsorbents and compared to commercial coconut-based activated carbon (ccAC). The results showed that calcination increased the surface area, pore volume, and functional groups of biochar responsible for adsorption. The calcined biochar achieved higher DOC removal efficiencies for both rivers than other adsorbents. PR contains more adsorbable DOM as over 800 molecules with carbon, hydrogen, and oxygen (CHO) features that were decreased or totally removed by all adsorbents. In contrast, for SR treatment, KOH-modified and calcined biochar was found to decrease over 800 CHO features, compared to around 500 and 400 CHO features for calcined biochar and ccAC, respectively. However, numerous background CHO features with reduced character (i.e., low degree of oxidation) were found after water treatment by calcined biochar, resulting in higher DBP formation after chlorination compared to the other adsorbents. The results of this study have important implications for future preparation of biochar for water treatment.


Assuntos
Eucalyptus , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal/análise , Desinfecção , Matéria Orgânica Dissolvida , Espectrometria de Massas , Tailândia , Poluentes Químicos da Água/análise
9.
J Hazard Mater ; 424(Pt C): 127691, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34775314

RESUMO

Biochar is a low-cost adsorbent with considerable potential for utilization as a water filtration medium; however, organic matter leaching from biochar can lead to the formation of disinfection by-products (DBPs). This study investigated the leaching of dissolved organic carbon (DOC) from eucalyptus-derived biochar and the formation of DBPs generated by chlorination and chloramination. Column experiments with empty bed contact times (EBCTs) of 10 and 30 min were conducted for 200 bed volumes (BVs). The highest DOC concentration (3.5 µg-C/g-biochar) was detected with an EBCT of 30 min. Chloroform (49 µg/L) and dichloroacetonitrile (7 µg/L) because of chlorination were found during the first five BVs, but were reduced thereafter. During the first 10 BVs, unknown chlorinated DBPs generated (CHOCl) by chlorination and chloramination (193 and 152 formulae, respectively) were tentatively identified via an unknown screening analysis. The release of DBP precursors from biochar tentatively identified in this study will impact water filtration applications.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Desinfecção , Matéria Orgânica Dissolvida , Halogenação , Espectrometria de Massas , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 754: 142074, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254897

RESUMO

This research investigates the characteristics of dissolved organic matter (DOM) removal by synthesized cotton-fiber adsorbents using unknown screening analysis with high resolution and accurate mass spectrometry. Molecular characteristics of DOM removed by adsorbents were investigated semiquantitatively and unknown disinfection byproduct (DBP) formation potentials were also investigated. Adsorbents were modified using ferric nitrate to increase the magnetic property. The XRD pattern showed Fe-containing crystalline structures in the modified adsorbent (M-CF). The M-CF possessed higher mesopore volume, which enhanced the dissolved organic carbon (DOC) removal efficiency to 74.50% (compared to 32.12% in the unmodified CF adsorbent). The kinetics experiment showed that both adsorbents were better fitted to pseudo-second orders than pseudo-first orders. The initial rate constant was higher in M-CF (1.40 mg/g min) than in CF (0.02 mg/g min) treatments due to the higher mesopore volume in M-CF. M-CF removed almost 700 carbon­hydrogen­oxygen based DOMs (CHO features), 300 more CHO features than CF. CF selectively adsorbed only higher-molecular-weight (MW) CHO features (more CH2 groups), while the mesopores in M-CF removed DOM with lower MW (fewer CH2 groups) that were refractory to CF. The low MW DOM removed only by M-CF mesopore exhibited more oxidized (positive carbon oxidation state, Cos) and saturated characters (negative oxygen-subtracted double bond equivalent per carbon, (DBE-O)/C). After chlorination, over 50 unknown DBPs were detected, 33 of which were commonly found in all samples. M-CF decreased unknown formation potential more than CF. However, adsorption of M-CF and CF before chlorination resulted in different remaining precursors to water chlorination and formed unique DBPs from those precursors.

11.
Sci Rep ; 10(1): 13391, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770016

RESUMO

The occurrence of manganese in groundwater causes coloured water and pipe rusting in water treatment systems. Consumption of manganese-contaminated water promotes neurotoxicity in humans and animals. Manganese-oxidizing bacteria were isolated from contaminated areas in Thailand for removing manganese from water. The selected bacterium was investigated for its removal kinetics and mechanism using synchrotron-based techniques. Among 21 isolates, Streptomyces violarus strain SBP1 (SBP1) was the best manganese-oxidizing bacterium. At a manganese concentration of 1 mg L-1, SBP1 achieved up to 46% removal. The isolate also successfully removed other metal and metalloid, such as iron (81%) and arsenic (38%). The manganese concentration played a role in manganese removal and bacterial growth. The observed self-substrate inhibition best fit with the Aiba model. Kinetic parameters estimated from the model, including a specific growth rate, half-velocity constant, and inhibitory constant, were 0.095 h-1, 0.453 mg L-1, and 37.975 mg L-1, respectively. The synchrotron-based techniques indicated that SBP1 removed manganese via combination of bio-oxidation (80%) and adsorption (20%). The study is the first report on biological manganese removal mechanism using synchrotron-based techniques. SBP1 effectively removed manganese under board range of manganese concentrations. This result showed the potential use of the isolate for treating manganese-contaminated water.


Assuntos
Chryseobacterium/metabolismo , Água Subterrânea/química , Compostos de Manganês/metabolismo , Streptomyces/metabolismo , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/análise , Poluição Química da Água/prevenção & controle , Purificação da Água/métodos , Adsorção , Chryseobacterium/isolamento & purificação , Compostos de Manganês/isolamento & purificação , Oxirredução , Óxidos/metabolismo , Streptomyces/isolamento & purificação , Síncrotrons , Tailândia , Poluentes Químicos da Água/isolamento & purificação
12.
Sci Total Environ ; 713: 136708, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32019044

RESUMO

Consumption of water containing high proportions of manganese could cause Parkinson's like symptoms and damage the central nervous systems. This study aims to investigate the potential of manganese removal through the development of microbial cell-immobilized biochar. The wood vinegar industry generates a large volume of carbonized wood waste (natural biochar) from the pyrolytic process. This is the first investigation utilizing this low value waste combined with biological treatment for water purification. Raw and hydrogen peroxide-modified biochars were used to immobilize an effective manganese-oxidizing bacterium, Streptomyces violarus strain SBP1 (SBP1). The results demonstrated that the modified biochar had a higher proportion of oxygen-containing functional groups leading to better manganese removal. Manganese adsorption by the modified biochar fitted pseudo-second-order and Langmuir models with the maximum adsorption capacity of 1.15 mg g-1. The modified biochar with SBP1 provided the highest removal efficiency at 78%. The advanced synchrotron analyses demonstrated that manganese removal by the biochar with SBP1 is due to the synergistic combination of manganese adsorption by biochars and biological oxidation by SBP1.


Assuntos
Streptomyces , Adsorção , Biotransformação , Carvão Vegetal , Manganês , Poluentes Químicos da Água
13.
Bioresour Technol ; 274: 113-119, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30502601

RESUMO

This study investigated removal of triclocarban (TCC) from contaminated wastewater by Pseudomonas fluorescens strain MC46 entrapped in barium alginate. Appropriate entrapped cell preparation conditions (cell-to-entrapment material ratio and cell loading) for removing TCC were examined. The highest TCC removal by the entrapped and free cell systems at the initial TCC concentration of 10 mg/L was 72 and 45%, respectively. TCC was degraded to less toxic compounds. Self-substrate inhibition was found at TCC concentration of 30 mg/L. The kinetics of TCC removal by entrapped and free cells fitted well with Edwards model. Scanning and transmission electron microscopic observations revealed that entrapment matrices reduced TCC-microbe contact, which lessened TCC inhibition. A live/dead cell assay also confirmed reduced microbial cell damage in the entrapped cell system compared to the free cell system. This study reveals the potential of entrapment technology to improve antibiotic removal from the environment.


Assuntos
Carbanilidas/isolamento & purificação , Pseudomonas fluorescens/metabolismo , Alginatos/química , Carbanilidas/metabolismo , Cinética , Eliminação de Resíduos Líquidos , Águas Residuárias
14.
Chemosphere ; 223: 455-464, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30784752

RESUMO

This study investigated the abilities of a purple non-sulfur bacterium, Rhodopseudomonas palustris TN110 to bioremediate cadmium through the biosynthesis of CdS nanoparticles and to fix nitrogen simultaneously. Under microaerobic-light conditions, R. palustris TN110 synthesized CdS nanoparticles. The produced CdS nanoparticles had a spherical shape and an average size of 4.85 nm. The Fourier transform infrared spectrum of the nanoparticles reveals the carbonyl groups, bending vibrations of the amide I and II bands of proteins, and CN stretching vibrations of aromatic and aliphatic amines. These bands and groups suggest protein capping/binding on the surface of the nanoparticles. R. palustris TN110 converted 25.61% of 0.2 mM CdCl2 to CdS nanoparticles under optimal conditions (pH 7.5, 30 °C and 3000 lux). The half maximal inhibitory concentration (IC50) value of the produced CdS nanoparticles was 1.76 mM. The produced CdS nanoparticles at IC50 up-regulated two genes associated with nitrogen fixation: Mo-Fe nitrogenase gene (nifH) and V-Fe nitrogenase gene (vnfG) at 2.83 and 2.27 fold changes, respectively. On the contrary, the produced CdS nanoparticles slightly down-regulated Fe-Fe nitrogenase gene (anfG). The amounts of ammonia released by the strain support the gene expression results. R. palustris TN110 has great potential to serve concurrently as a cadmium bioremediation agent and a nitrogen fixer. The strain could be beneficial to paddy fields that are contaminated with Cd through run off from mining and chemical fertilizer applications.


Assuntos
Biodegradação Ambiental , Compostos de Cádmio/química , Cádmio/química , Fixação de Nitrogênio , Rodopseudomonas/metabolismo , Sulfetos/química , Compostos de Cádmio/metabolismo , Compostos de Cádmio/farmacologia , Precipitação Química , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/ultraestrutura , Nitrogenase/efeitos dos fármacos , Nitrogenase/genética , Sulfetos/metabolismo , Sulfetos/farmacologia
15.
Environ Sci Pollut Res Int ; 24(10): 9229-9240, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28224336

RESUMO

Silver nanoparticles (AgNPs) are widely used in commercial products because of their excellent antimicrobial activity. Entrance of AgNPs and its released Ag ions (Ag+) into wastewater treatment plants could harm ammonia oxidation (AO) process resulting in environmental problems. This study investigated inhibitory kinetics and mechanism of AO from nitrifying sludge influenced by AgNPs and Ag+. The findings demonstrated that AgNPs and Ag+ adversely influenced on AO. Silver ions were more toxic to AO than AgNPs, which was indicated by the lower inhibitory constant (K i ) of 0.29 mg/L compared to that of AgNPs (K i of 73.5 mg/L). Over the experimental period of 60 h, AgNPs at 1, 10, and 100 mg/L released Ag+ in the average concentrations of 0.059, 0.171, and 0.503 mg/L, respectively. Silver nanoparticles of 1-100 mg/L inhibited AO by 45-74%, whereas Ag+ of 0.05-0.50 mg/L inhibited AO by 53-94%. This suggested that the AgNP toxicity mainly derived from the liberated Ag+. Scanning electron microscopy results revealed that AgNPs attached on microbial cell surfaces, and both AgNPs and Ag+ induced cell morphological change from rod shape to shorter rod shape. Transmission electron microscopy showed that AgNPs and Ag+ diminished the thickness of the outer layer and reduced the density of internal parts of the exposed microbial cells, which could be the reasons for the morphology change. Live/dead results also confirmed that AgNPs and Ag+ damaged membrane integrity of cells in the nitrifying sludge. This study suggested that the primary mechanism for toxicity of AgNPs was the liberation of Ag+ and then both of silver species caused cell death.


Assuntos
Esgotos , Prata/toxicidade , Amônia/metabolismo , Íons , Cinética , Nanopartículas Metálicas/toxicidade
16.
Environ Sci Pollut Res Int ; 22(1): 320-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25065481

RESUMO

Profenofos (PF) is one of the heavily used organophosphorus pesticides (OPPs) of which its contamination is ubiquitous in an agricultural area. This study aims to acquire and characterize PF-degrading bacterial cultures from contaminated soil. OPP degradation by the novel isolates was then investigated. The experiment was performed at the initial PF concentration of 20 mg/L. The result showed that the enriched consortium comprised three predominant PF-degrading strains designated as PF1, PF2, and PF3. The isolates (PF1, PF2, and PF3) were characterized as Pseudomonas plecoglossicida, Pseudomonas aeruginosa, and P. aeruginosa, respectively. A consortium and all isolates could utilize PF as a sole carbon source with PF removal of more than 90% via a hydrolysis process. The bacterial growth and PF degradation rates followed the first-order kinetic reaction with the rates of 0.4 to 2.7/h and 0.15 to 1.96/h, respectively. Additional carbon supplement deteriorated PF biodegradation. The enriched cultures were also capable for degrading chlorpyrifos and dicrotophos pesticides (33-73% removal). The results indicated that the consortium and isolates are efficient for PF and other OPP degradation and have potential for PF remediation.


Assuntos
Inseticidas/metabolismo , Consórcios Microbianos , Organotiofosfatos/metabolismo , Poluentes do Solo/metabolismo , Agricultura , Biodegradação Ambiental , Capsicum , Clorpirifos/metabolismo , Compostos Organofosforados/metabolismo , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa