Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Tipo de estudo
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 15(1): 517, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27769257

RESUMO

BACKGROUND: An effective malaria vaccine is an urgently needed tool to fight against human malaria, the most deadly parasitic disease of humans. One promising candidate is the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum. This antigenic protein, encoded by the merozoite surface protein (msp-3) gene, is polymorphic and classified according to size into the two allelic types of K1 and 3D7. A recent study revealed that both the K1 and 3D7 alleles co-circulated within P. falciparum populations in Thailand, but the extent of the sequence diversity and variation within each allelic type remains largely unknown. METHODS: The msp-3 gene was sequenced from 59 P. falciparum samples collected from five endemic areas (Mae Hong Son, Kanchanaburi, Ranong, Trat and Ubon Ratchathani) in Thailand and analysed for nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity. The gene was also subject to population genetic analysis (F st ) and neutrality tests (Tajima's D, Fu and Li D* and Fu and Li' F* tests) to determine any signature of selection. RESULTS: The sequence analyses revealed eight unique DNA haplotypes and seven amino acid sequence variants, with a haplotype and nucleotide diversity of 0.828 and 0.049, respectively. Neutrality tests indicated that the polymorphism detected in the alanine heptad repeat region of MSP-3 was maintained by positive diversifying selection, suggesting its role as a potential target of protective immune responses and supporting its role as a vaccine candidate. Comparison of MSP-3 variants among parasite populations in Thailand, India and Nigeria also inferred a close genetic relationship between P. falciparum populations in Asia. CONCLUSION: This study revealed the extent of the msp-3 gene diversity in P. falciparum in Thailand, providing the fundamental basis for the better design of future blood stage malaria vaccines against P. falciparum.


Assuntos
Antígenos de Protozoários/genética , Variação Genética , Plasmodium falciparum/classificação , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/genética , DNA de Protozoário/química , DNA de Protozoário/genética , Humanos , Plasmodium falciparum/genética , Análise de Sequência de DNA , Tailândia
2.
Korean J Parasitol ; 53(2): 177-87, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25925176

RESUMO

Merozoite surface proteins (MSPs) of malaria parasites play critical roles during the erythrocyte invasion and so are potential candidates for malaria vaccine development. However, because MSPs are often under strong immune selection, they can exhibit extensive genetic diversity. The gene encoding the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum displays 2 allelic types, K1 and 3D7. In Thailand, the allelic frequency of the P. falciparum msp-3 gene was evaluated in a single P. falciparum population in Tak at the Thailand and Myanmar border. However, no study has yet looked at the extent of genetic diversity of the msp-3 gene in P. falciparum populations in other localities. Here, we genotyped the msp-3 alleles of 63 P. falciparum samples collected from 5 geographical populations along the borders of Thailand with 3 neighboring countries (Myanmar, Laos, and Cambodia). Our study indicated that the K1 and 3D7 alleles coexisted, but at different proportions in different Thai P. falciparum populations. K1 was more prevalent in populations at the Thailand-Myanmar and Thailand-Cambodia borders, whilst 3D7 was more prevalent at the Thailand-Laos border. Global analysis of the msp-3 allele frequencies revealed that proportions of K1 and 3D7 alleles of msp-3 also varied in different continents, suggesting the divergence of malaria parasite populations. In conclusion, the variation in the msp-3 allelic patterns of P. falciparum in Thailand provides fundamental knowledge for inferring the P. falciparum population structure and for the best design of msp-3 based malaria vaccines.


Assuntos
Antígenos de Protozoários/genética , Frequência do Gene , Variação Genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Genótipo , Humanos , Malária Falciparum/epidemiologia , Plasmodium falciparum/classificação , Plasmodium falciparum/isolamento & purificação , Polimorfismo Genético , Tailândia/epidemiologia
3.
Malar J ; 13: 54, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24521474

RESUMO

BACKGROUND: The 19-kDa C-terminal region of the merozoite surface protein-1 of the human malaria parasite Plasmodium falciparum (PfMSP-119) constitutes the major component on the surface of merozoites and is considered as one of the leading candidates for asexual blood stage vaccines. Because the protein exhibits a level of sequence variation that may compromise the effectiveness of a vaccine, the global sequence diversity of PfMSP-119 has been subjected to extensive research, especially in malaria endemic areas. In Thailand, PfMSP-119 sequences have been derived from a single parasite population in Tak province, located along the Thailand-Myanmar border, since 1995. However, the extent of sequence variation and the spatiotemporal patterns of the MSP-119 haplotypes along the Thai borders with Laos and Cambodia are unknown. METHODS: Sixty-three isolates of P. falciparum from five geographically isolated populations along the Thai borders with Myanmar, Laos and Cambodia in three transmission seasons between 2002 and 2008 were collected and culture-adapted. The msp-1 gene block 17 was sequenced and analysed for the allelic diversity, frequency and distribution patterns of PfMSP-119 haplotypes in individual populations. The PfMSP-119 haplotype patterns were then compared between parasite populations to infer the population structure and genetic differentiation of the malaria parasite. RESULTS: Five conserved polymorphic positions, which accounted for five distinct haplotypes, of PfMSP-119 were identified. Differences in the prevalence of PfMSP-119 haplotypes were detected in different geographical regions, with the highest levels of genetic diversity being found in the Kanchanaburi and Ranong provinces along the Thailand-Myanmar border and Trat province located at the Thailand-Cambodia border. Despite this variability, the distribution patterns of individual PfMSP-119 haplotypes seemed to be very similar across the country and over the three malarial transmission seasons, suggesting that gene flow may operate between parasite populations circulating in Thailand and the three neighboring countries. CONCLUSION: The major MSP-119 haplotypes of P. falciparum populations in all endemic populations during three transmission seasons in Thailand were identified, providing basic information on the common haplotypes of MSP-119 that is of use for malaria vaccine development and inferring the population structure of P. falciparum populations in Thailand.


Assuntos
Variação Genética , Haplótipos , Malária Falciparum/parasitologia , Proteína 1 de Superfície de Merozoito/genética , Filogeografia , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Camboja , Frequência do Gene , Genótipo , Humanos , Laos , Mianmar , Plasmodium falciparum/isolamento & purificação , Análise de Sequência de DNA , Tailândia , Tempo
4.
Malar J ; 8: 155, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19602241

RESUMO

BACKGROUND: The population structure of the causative agents of human malaria, Plasmodium sp., including the most serious agent Plasmodium falciparum, depends on the local epidemiological and demographic situations, such as the incidence of infected people, the vector transmission intensity and migration of inhabitants (i.e. exchange between sites). Analysing the structure of P. falciparum populations at a large scale, such as continents, or with markers that are subject to non-neutral selection, can lead to a masking and misunderstanding of the effective process of transmission. Thus, knowledge of the genetic structure and organization of P. falciparum populations in a particular area with neutral genetic markers is needed to understand which epidemiological factors should be targeted for disease control. Limited reports are available on the population genetic diversity and structure of P. falciparum in Thailand, and this is of particular concern at the Thai-Myanmar and Thai-Cambodian borders, where there is a reported high resistance to anti-malarial drugs, for example mefloquine, with little understanding of its potential gene flow. METHODS: The diversity and genetic differentiation of P. falciparum populations were analysed using 12 polymorphic apparently neutral microsatellite loci distributed on eight of the 14 different chromosomes. Samples were collected from seven provinces in the western, eastern and southern parts of Thailand. RESULTS: A strong difference in the nuclear genetic structure was observed between most of the assayed populations. The genetic diversity was comparable to the intermediate level observed in low P. falciparum transmission areas (average HS = 0.65 +/- 0.17), where the lowest is observed in South America and the highest in Africa. However, uniquely the Yala province, had only a single multilocus genotype present in all samples, leading to a strong geographic differentiation when compared to the other Thai populations during this study. Comparison of the genetic structure of P. falciparum populations in Thailand with those in the French Guyana, Congo and Cameroon revealed a significant genetic differentiation between all of them, except the two African countries, whilst the genetic variability of P. falciparum amongst countries showed overlapping distributions. CONCLUSION: Plasmodium falciparum shows genetically structured populations across local areas of Thailand. Although Thailand is considered to be a low transmission area, a relatively high level of genetic diversity and no linkage disequilibrium was found in five of the studied areas, the exception being the Yala province (Southern peninsular Thailand), where a clonal population structure was revealed and in Kanchanaburi province (Western Thailand). This finding is particularly relevant in the context of malaria control, because it could help in understanding the special dynamics of parasite populations in areas with different histories of, and exposure to, drug regimens.


Assuntos
Variação Genética , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/classificação , Plasmodium falciparum/isolamento & purificação , Animais , Impressões Digitais de DNA , Humanos , Repetições de Microssatélites , Epidemiologia Molecular , Plasmodium falciparum/genética , Tailândia/epidemiologia
5.
Trans R Soc Trop Med Hyg ; 96(1): 70-1, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11925999

RESUMO

Polymerase chain reaction detection revealed cryptic Plasmodium falciparum infections in 21 of 160 samples collected from Thai patients diagnosed (by microscopy) with vivax malaria. The clinical and biological significance of these mixed infections is discussed in the context of chloroquine resistance and the low inoculation rates which characterize malaria epidemiology in Thailand.


Assuntos
Malária Falciparum/complicações , Malária Vivax/complicações , Plasmodium falciparum/isolamento & purificação , Animais , Humanos , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Malária Vivax/sangue , Malária Vivax/parasitologia , Plasmodium vivax/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Tailândia
6.
Asian Pac J Trop Biomed ; 2(1): 66-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23569837

RESUMO

OBJECTIVE: To compare the protein patterns from the extracts of the mutant clone T9/94-M1-1(b3) induced by pyrimethamine, and the original parent clone T9/94 following separation of parasite extracts by two-dimensional electrophoresis (2-DE). METHODS: Proteins were solubilized and separated according to their charges and sizes. The separated protein spots were then detected by silver staining and analyzed for protein density by the powerful image analysis software. RESULTS: Differentially expressed protein patterns (up- or down-regulation) were separated from the extracts from the two clones. A total of 223 and 134 protein spots were detected from the extracts of T9/94 and T9/94-M1-1(b3) clones, respectively. Marked reduction in density of protein expression was observed with the extract from the mutant (resistant) clone compared with the parent (sensitive) clone. A total of 25 protein spots showed at least two-fold difference in density, some of which exhibited as high as ten-fold difference. CONCLUSIONS: These proteins may be the molecular targets of resistance of Plasmodium falciparum to pyrimethamine. Further study to identify the chemical structures of these proteins by mass spectrometry is required.


Assuntos
Antimaláricos/metabolismo , Resistência a Medicamentos , Plasmodium falciparum/química , Plasmodium falciparum/efeitos dos fármacos , Proteoma/análise , Proteínas de Protozoários/análise , Pirimetamina/metabolismo , Eletroforese em Gel Bidimensional , Humanos , Processamento de Imagem Assistida por Computador , Mutação , Plasmodium falciparum/genética , Coloração e Rotulagem
7.
Artigo em Chinês | WPRIM | ID: wpr-672486

RESUMO

Objective: To compare the protein patterns from the extracts of the mutant clone T9/94-M1-1(b3) induced by pyrimethamine, and the original parent clone T9/94 following separation of parasite extracts by two-dimensional electrophoresis (2-DE). Methods: Proteins were solubilized and separated according to their charges and sizes. The separated protein spots were then detected by silver staining and analyzed for protein density by the powerful image analysis software. Results:Differentially expressed protein patterns (up- or down-regulation) were separated from the extracts from the two clones. A total of 223 and 134 protein spots were detected from the extracts of T9/94 and T9/94-M1-1(b3) clones, respectively. Marked reduction in density of protein expression was observed with the extract from the mutant (resistant) clone compared with the parent (sensitive) clone. A total of 25 protein spots showed at least two-fold difference in density, some of which exhibited as high as ten-fold difference. Conclusions: These proteins may be the molecular targets of resistance of Plasmodium falciparum to pyrimethamine. Further study to identify the chemical structures of these proteins by mass spectrometry is required.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa