Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 25(31): 7111-20, 2005 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-16079393

RESUMO

Mutations in GJB1, the gene encoding the gap junction protein connexin32 (Cx32), cause the X-linked form of Charcot-Marie-Tooth disease, an inherited demyelinating neuropathy. The C terminus of human Cx32 contains a putative prenylation motif that is conserved in Cx32 orthologs. Using [3H]mevalonolactone ([3H]MVA) incorporation, we demonstrated that wild-type human connexin32 can be prenylated in COS7 cells, in contrast to disease-associated mutations that are predicted to disrupt the prenylation motif. We generated transgenic mice that express these mutants in myelinating Schwann cells. Male mice expressing a transgene were crossed with female Gjb1-null mice; the male offspring were all Gjb1-null, and one-half were transgene positive; in these mice, all Cx32 was derived from expression of the transgene. The mutant human protein was properly localized in myelinating Schwann cells in multiple transgenic lines and did not alter the localization of other components of paranodes and incisures. Finally, both the C280G and the S281x mutants appeared to "rescue" the phenotype of Gjb1-null mice, because transgene-positive male mice had significantly fewer abnormally myelinated axons than did their transgene-negative male littermates. These results indicate that Cx32 is prenylated, but that prenylation is not required for proper trafficking of Cx32 and perhaps not even for certain aspects of its function, in myelinating Schwann cells.


Assuntos
Conexinas/genética , Conexinas/fisiologia , Mutação , Bainha de Mielina/fisiologia , Prenilação de Proteína/genética , Células de Schwann/fisiologia , Motivos de Aminoácidos/genética , Animais , Códon de Terminação , Conexinas/deficiência , Conexinas/metabolismo , Sequência Conservada , Cisteína , DNA/metabolismo , Evolução Molecular , Feminino , Nervo Femoral/fisiologia , Glicina , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Nervo Isquiático/fisiologia , Serina , Distribuição Tecidual , Proteína beta-1 de Junções Comunicantes
2.
J Neurosci ; 25(41): 9418-27, 2005 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-16221851

RESUMO

Nodes of Ranvier are specialized axonal domains, at which voltage-gated sodium channels cluster. How axons cluster molecules in discrete domains is mostly unknown. Both axons and glia probably provide constraining mechanisms that contribute to domain formation. Proper sodium channel clustering in peripheral nerves depends on contact from Schwann cell microvilli, where at least one molecule, gliomedin, binds the sodium channel complex and induces its clustering. Furthermore, mice lacking Schwann cell dystroglycan have aberrant microvilli and poorly clustered sodium channels. Dystroglycan could interact at the basal lamina or at the axonglial surface. Because dystroglycan is a laminin receptor, and laminin 2 mutations [merosin-deficient congenital muscular dystrophy (MDC1A)] cause reduced nerve conduction velocity, we asked whether laminins are involved. Here, we show that the composition of both laminins and the dystroglycan complex at nodes differs from that of internodes. Mice defective in laminin 2 have poorly formed microvilli and abnormal sodium clusters. These abnormalities are similar, albeit less severe, than those of mice lacking dystroglycan. However, mice lacking all Schwann cell laminins show severe nodal abnormalities, suggesting that other laminins compensate for the lack of laminin 2. Thus, although laminins are located at a distance from the axoglial junction, they are required for proper clustering of sodium channels. Laminins, through their specific nodal receptors and cytoskeletal linkages, may participate in the formation of mechanisms that constrain clusters at nodes. Finally, abnormal sodium channel clusters are present in a patient with MDC1A, providing a molecular basis for the reduced nerve conduction velocity in this disorder.


Assuntos
Distroglicanas/fisiologia , Laminina/fisiologia , Nós Neurofibrosos/fisiologia , Células de Schwann/fisiologia , Canais de Sódio/fisiologia , Animais , Distroglicanas/deficiência , Distroglicanas/genética , Humanos , Laminina/deficiência , Laminina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos
3.
Br J Pharmacol ; 173(21): 3080-3087, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27417329

RESUMO

BACKGROUND AND PURPOSE: Asthma presents as a heterogeneous syndrome characterized by airway obstruction, inflammation and hyper-reactivity (AHR). Spleen tyrosine kinase (Syk) mediates allergen-induced mast cell degranulation, a central component of allergen-induced inflammation and AHR. However, the role of Syk in IgE-mediated constriction of human small airways remains unknown. In this study, we addressed whether selective inhibition of Syk attenuates IgE-mediated constriction and mast cell mediator release in human small airways. EXPERIMENTAL APPROACH: Human precision cut lung slices (hPCLS) ex vivo derived from non-asthmatic donors were incubated overnight with human IgE, dexamethasone, montelukast, antihistamines or a selective Syk inhibitor (SYKi). High-affinity IgE receptor (FcεRI) activation by anti-IgE cross-linking was performed, and constriction and mediator release measured. Airway constriction was normalized to that induced by maximal carbachol stimulation. Syk expression (determined by qPCR and immunoblot) was also evaluated in human primary airway smooth muscle (HASM) cells to determine whether Syk directly modulates HASM function. KEY RESULTS: While dexamethasone had little effect on FcεR-mediated contraction, montelukast or antihistamines partially attenuated the response. SYKi abolished anti-IgE-mediated contraction and suppressed the release of mast cell or basophil mediators from the IgE-treated hPCLS. In contrast, SYKi had little effect on the non-allergic contraction induced by carbachol. Syk mRNA and protein were undetectable in HASM cells. CONCLUSIONS AND IMPLICATIONS: A selective Syk inhibitor, but not corticosteroids, abolished FcεR-mediated contraction in human small airways ex vivo. The mechanism involved FcεRI receptor activation on mast cells or basophils that degranulate causing airway constriction, rather than direct actions on HASM.


Assuntos
Imunoglobulina E/imunologia , Pulmão/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Baço/enzimologia , Células Cultivadas , Humanos , Técnicas In Vitro , Pulmão/citologia , Pulmão/enzimologia , Pulmão/imunologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/imunologia , Músculo Liso/enzimologia , Músculo Liso/imunologia , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/metabolismo
4.
J Neurosci ; 22(23): 10217-31, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12451123

RESUMO

Despite the importance of myelinating Schwann cells in health and disease, little is known about the genetic mechanisms underlying their development. The POU domain transcription factor pou3f1 (Tst-1, SCIP, Oct-6) is required for the normal differentiation of myelinating Schwann cells, but its precise role requires identification of the genes that it regulates. Here we report the isolation of six genes whose expression is reduced in the absence of pou3f1. Only one of these genes, the fatty acid transport protein P2, was known previously to be expressed in Schwann cells. The LIM domain proteins cysteine-rich protein-1 (CRP1) and CRP2 are expressed in sciatic nerve and induced by forskolin in cultured Schwann cells, but only CRP2 requires pou3f1 for normal expression. pou3f1 appears to require the claw paw gene product for activation of at least some of its downstream effector genes. Expression of the novel Schwann cell genes after nerve injury suggests that they are myelin related. One of the genes, tramdorin1, encodes a novel amino acid transport protein that is localized to paranodes and incisures. Our results suggest that pou3f1 functions to activate gene expression in the differentiation of myelinating Schwann cells.


Assuntos
Proteínas Aviárias , Regulação para Baixo/fisiologia , Perfilação da Expressão Gênica , Nervo Isquiático/metabolismo , Neuropatia Ciática/metabolismo , Fatores de Transcrição/deficiência , Proteínas Adaptadoras de Transdução de Sinal , Sistemas de Transporte de Aminoácidos/fisiologia , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Colforsina/farmacologia , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Proteínas com Domínio LIM , Camundongos , Camundongos Mutantes , Bainha de Mielina/metabolismo , Fator 6 de Transcrição de Octâmero , Estrutura Terciária de Proteína/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Nervo Isquiático/lesões , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Comp Neurol ; 479(4): 424-34, 2004 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-15514980

RESUMO

Intraneurally injected lysolecithin causes both segmental and paranodal demyelination. In demyelinated internodes, axonal components of nodes fragment and disappear, glial and axonal paranodal and juxtaparanodal proteins no longer cluster, and axonal Kv1.1/Kv1.2 K+ channels move from the juxtaparanodal region to appose the remaining heminodes. In paranodal demyelination, a gap separates two distinct heminodes, each of which contains the molecular components of normal nodes; paranodal and juxtaparanodal proteins are properly localized. As in normal nodes, widened nodal regions contain little or no band 4.1B. Lysolecithin also causes "unwinding" of paranodes: The spiral of Schwann cell membrane moves away from the paranodes, but the glial and axonal components of septate-like junctions remain colocalized. Thus, acute demyelination has distinct effects on the molecular organization of the nodal, paranodal, and juxtaparanodal region, reflecting altered axon-Schwann cell interactions.


Assuntos
Membrana Celular/metabolismo , Doenças Desmielinizantes/metabolismo , Nervos Periféricos/metabolismo , Nós Neurofibrosos/metabolismo , Células de Schwann/metabolismo , Doença Aguda , Animais , Comunicação Celular , Membrana Celular/patologia , Membrana Celular/ultraestrutura , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Imuno-Histoquímica , Canal de Potássio Kv1.1 , Lisofosfatidilcolinas , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos , Microscopia Eletrônica de Transmissão , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Nervos Periféricos/patologia , Nervos Periféricos/fisiopatologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Nós Neurofibrosos/patologia , Nós Neurofibrosos/ultraestrutura , Ratos , Ratos Sprague-Dawley , Células de Schwann/patologia , Células de Schwann/ultraestrutura
6.
J Cell Mol Med ; 12(2): 679-89, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18021315

RESUMO

Mutations in the mitochondrial protein GDAP1 are the cause of Charcot-Marie-Tooth type 4A disease (CMT4A), a severe form of peripheral neuropathy associated with either demyelinating, axonal or intermediate phenotypes. GDAP1 is located in the outer mitochondrial membrane and it seems that may be related with the mitochondrial network dynamics. We are interested to define cell expression in the nervous system and the effect of mutations in mitochondrial morphology and pathogenesis of the disease. We investigated GDAP1 expression in the nervous system and dorsal root ganglia (DRG) neuron cultures. GDAP1 is expressed in motor and sensory neurons of the spinal cord and other large neurons such as cerebellar Purkinje neurons, hippocampal pyramidal neurons, mitral neurons of the olfactory bulb and cortical pyramidal neurons. The lack of GDAP1 staining in the white matter and nerve roots suggested that glial cells do not express GDAP1. In DRG cultures satellite cells and Schwann cells were GDAP1-negative. Overexpression of GDAP1-induced fragmentation of mitochondria suggesting a role of GDAP1 in the fission pathway of the mitochondrial dynamics. Missense mutations showed two different patterns: most of them induced mitochondrial fragmentation but the T157P mutation showed an aggregation pattern. Whereas null mutations of GDAP1 should be associated with loss of function of the protein, missense mutations may act through different pathogenic mechanisms including a dominant-negative effect, suggesting that different molecular mechanisms may underlay the pathogenesis of CMT4A.


Assuntos
Doença de Charcot-Marie-Tooth/etiologia , Expressão Gênica , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/citologia , Sistema Nervoso/metabolismo , Animais , Animais Recém-Nascidos , Células COS , Células Cultivadas , Doença de Charcot-Marie-Tooth/classificação , Chlorocebus aethiops , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Células HeLa , Humanos , Imuno-Histoquímica , Interneurônios/metabolismo , Camundongos , Neurônios Motores/metabolismo , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Neurônios Aferentes/metabolismo , Células de Purkinje/metabolismo , Células Piramidais/metabolismo , Ratos , Medula Espinal/metabolismo
7.
Neurobiol Dis ; 17(2): 290-9, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15474366

RESUMO

Mutations in the gene encoding N-myc downstream-regulated gene-1 (NDRG1) lead to truncations of the encoded protein and are associated with an autosomal recessive demyelinating neuropathy--hereditary motor and sensory neuropathy-Lom. NDRG1 protein is highly expressed in peripheral nerve and is localized in the cytoplasm of myelinating Schwann cells, including the paranodes and Schmidt-Lanterman incisures. In contrast, sensory and motor neurons as well as their axons lack NDRG1. NDRG1 mRNA levels in developing and injured adult sciatic nerves parallel those of myelin-related genes, indicating that the expression of NDRG1 in myelinating Schwann cells is regulated by axonal interactions. Oligodendrocytes also express NDRG1, and the subtle CNS deficits of affected patients may result from a lack of NDRG1 in these cells. Our data predict that the loss of NDRG1 leads to a Schwann cell autonomous phenotype resulting in demyelination, with secondary axonal loss.


Assuntos
Neuropatia Hereditária Motora e Sensorial/fisiopatologia , Bainha de Mielina , Proteínas Nucleares/metabolismo , Células de Schwann/metabolismo , Animais , Axônios , Células COS , Proteínas de Ciclo Celular , Células Cultivadas , Chlorocebus aethiops , Neuropatia Hereditária Motora e Sensorial/metabolismo , Neuropatia Hereditária Motora e Sensorial/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Oligodendroglia/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa