RESUMO
Aesthetic attractivity stands as an underestimated yet fundamental feature of species in conservation biology, significantly driving disproportionate protection efforts towards charismatic species. Despite the evidence, few attempts sought to precisely quantify the impact of aesthetic attractivity in defining priority of species for conservation actions (e.g. inclusion in International Union for Conservation of Nature red lists and protection lists). This study protocol describes the setting of an online test (available from April 2022 to April 2023 at www.unveiling.eu) designed to i) quantify the aesthetic attractivity to humans of the 496 European butterfly species and ii) identify which features (both in the perceived animal and in the perceiver) influence the aesthetic attractivity of a given butterfly species. The test is divided in 5 sections (personal data, ranking, single morphological features, emotional engagement, dispositional variables) aimed at profiling the relation each participant has with the species examined. In the long-term, evaluating butterflies' aesthetic attractivity could facilitate the critical assessment of current conservation strategies, such as the process of selection of flag and umbrella species by research institutions, environmental associations and Non Governative Organizations. This is expected to provide the much-needed evidence to set up unbiased biodiversity conservation strategies and counteract the selective anthropogenic pressure which favours the extinction of unattractive species, being no or less protected compared to charismatic species.
Assuntos
Borboletas , Ecossistema , Animais , Humanos , Conservação dos Recursos Naturais/métodos , Biodiversidade , Estética , InternetRESUMO
Background: Recent studies evidence that blue-LED-light irradiation can modulate cell responses in the wound healing process within 24 h from treatment. This study aims to investigate blue-light (410-430 nm) photobiomodulation used in a murine wound model within six days post-treatment. Methods: A superficial wound was made in 30 CD1 male mice. The injuries were treated with a blue LED light (20.6 J/cm2), and biopsies were collected at 24, 72, and 144 h. Histology, fluorescence analysis, and advanced microscopy techniques were used. Results: We can observe an increase in the cellular infiltrate response, and in mast-cell density and their degranulation index correlated to the expression of the major histocompatibility complex after 24 h. Furthermore, after six days, the vessel density increases with the expression of the platelet-derived growth factor in the mast cells. Finally, collagen deposition and morphology in the treated wounds appear more similar to unwounded skin. Conclusions: Blue-light photobiomodulation stimulates several cellular processes that are finely coordinated by mast cells, leading to more rapid wound healing and a better-recovered skin morphology.