Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 34(1): 386-398, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914653

RESUMO

To date, there is no direct evidence of telomerase activity in adult lung epithelial cells, but typical culture conditions only support cell proliferation for 30-40 population doublings (PD), a point at which telomeres remain relatively long. Here we report that in in vitro low stress culture conditions consisting of a fibroblast feeder layer, rho-associated coiled coil protein kinase inhibitor (ROCKi), and low oxygen (2%), normal human bronchial epithelial basal progenitor cells (HBECs) divide for over 200 PD without engaging a telomere maintenance mechanism (almost four times the "Hayflick limit"). HBECs exhibit critically short telomeres at 200 PD and the population of cells start to undergo replicative senescence. Subcloning these late passage cells to clonal density, to mimic lung injury in vivo, selects for rare subsets of HBECs that activate low levels of telomerase activity to maintain short telomeres. CRISPR/Cas9 knockout of human telomerase reverse transcriptase or treatment with the telomerase-mediated telomere targeting agent 6-thio-2'deoxyguanosine abrogates colony growth in these late passage cultures (>200 PD) but not in early passage cultures (<200 PD). To our knowledge, this is the first study to report such long-term growth of HBECs without a telomere maintenance mechanism. This report also provides direct evidence of telomerase activation in HBECs near senescence when telomeres are critically short. This novel cell culture system provides an experimental model to understand how telomerase is regulated in normal adult tissues.


Assuntos
Brônquios/citologia , Técnicas de Cultura de Células/métodos , Proliferação de Células , Senescência Celular , Células Epiteliais/citologia , Fibroblastos/citologia , Telômero/fisiologia , Adulto , Brônquios/fisiologia , Divisão Celular , Células Cultivadas , Células Epiteliais/fisiologia , Fibroblastos/fisiologia , Humanos , Telomerase/metabolismo , Encurtamento do Telômero
2.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073639

RESUMO

Neurotrophins constitute a family of growth factors initially characterized as predominant mediators of nervous system development, neuronal survival, regeneration and plasticity. Their biological activity is promoted by the binding of two different types of receptors, leading to the generation of multiple and variegated signaling cascades in the target cells. Increasing evidence indicates that neurotrophins are also emerging as crucial regulators of metabolic processes in both neuronal and non-neuronal cells. In this context, it has been reported that neurotrophins affect redox balance, autophagy, glucose homeostasis and energy expenditure. Additionally, the trophic support provided by these secreted factors may involve the regulation of cholesterol metabolism. In this review, we examine the neurotrophins' signaling pathways and their effects on metabolism by critically discussing the most up-to-date information. In particular, we gather experimental evidence demonstrating the impact of these growth factors on cholesterol metabolism.


Assuntos
Colesterol/metabolismo , Metabolismo Energético , Polissacarídeos/metabolismo , Transdução de Sinais , Animais , Humanos , Oxirredução
3.
Gut ; 67(5): 903-917, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28389531

RESUMO

OBJECTIVE: Cancer stem cells (CSCs) are responsible for tumour formation and spreading, and their targeting is required for tumour eradication. There are limited therapeutic options for advanced colorectal cancer (CRC), particularly for tumours carrying RAS-activating mutations. The aim of this study was to identify novel CSC-targeting strategies. DESIGN: To discover potential therapeutics to be clinically investigated as single agent, we performed a screening with a panel of FDA-approved or investigational drugs on primary CRC cells enriched for CSCs (CRC-SCs) isolated from 27 patients. Candidate predictive biomarkers of efficacy were identified by integrating genomic, reverse-phase protein microarray (RPPA) and cytogenetic analyses, and validated by immunostainings. DNA replication stress (RS) was increased by employing DNA replication-perturbing or polyploidising agents. RESULTS: The drug-library screening led to the identification of LY2606368 as a potent anti-CSC agent acting in vitro and in vivo in tumour cells from a considerable number of patients (∼36%). By inhibiting checkpoint kinase (CHK)1, LY2606368 affected DNA replication in most CRC-SCs, including RAS-mutated ones, forcing them into premature, lethal mitoses. Parallel genomic, RPPA and cytogenetic analyses indicated that CRC-SCs sensitive to LY2606368 displayed signs of ongoing RS response, including the phosphorylation of RPA32 and ataxia telangiectasia mutated serine/threonine kinase (ATM). This was associated with mutation(s) in TP53 and hyperdiploidy, and made these CRC-SCs exquisitely dependent on CHK1 function. Accordingly, experimental increase of RS sensitised resistant CRC-SCs to LY2606368. CONCLUSIONS: LY2606368 selectively eliminates replication-stressed, p53-deficient and hyperdiploid CRC-SCs independently of RAS mutational status. These results provide a strong rationale for biomarker-driven clinical trials with LY2606368 in patients with CRC.


Assuntos
Antineoplásicos/farmacologia , Quinase 1 do Ponto de Checagem/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Pirazinas/farmacologia , Pirazóis/farmacologia , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Neoplasias Colorretais/genética , Replicação do DNA/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Mutação , Células-Tronco Neoplásicas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Supressora de Tumor p53/genética
4.
PLoS One ; 19(7): e0307598, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39042641

RESUMO

Metformin is a biguanide currently used in the treatment of diabetes mellitus type 2. Besides its anti-glycemic effects, metformin has been reported to induce different cellular pleiotropic effects, depending on concentration and time of treatment. Here we report one administration of metformin (0.5 mM) has radioprotective effects in vitro on BJ human fibroblasts, increasing DNA damage repair and increasing SOD1 expression in the nucleus. Importantly, metformin (200 mg/kg) pre-administration for only 3 days in wild type 129/sv mice, decreases the formation of micronuclei in bone marrow cells and DNA damage in colon and lung tissues compared to control irradiated mice at sub-lethal and lethal doses, increasing the overall survival fraction by 37% after 10Gy total body irradiation. We next pre-treated with metformin and then exposed 129/sv mice, to a galactic cosmic rays simulation (GCRsim), at the NASA Space Radiation Laboratory (NSRL). We found metformin pre-treatment decreases the presence of bone marrow micronuclei and DNA damage in colon and lung tissues and an increase of 8-oxoguanine DNA glycosylase-1 (OGG1) expression. Our data highlight a radioprotective effect of metformin through an indirect modulation of the gene expression involved in the cellular detoxification rather than its effects on mitochondria.


Assuntos
Dano ao DNA , Hipoglicemiantes , Metformina , Protetores contra Radiação , Metformina/farmacologia , Animais , Camundongos , Humanos , Protetores contra Radiação/farmacologia , Hipoglicemiantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Superóxido Dismutase/metabolismo , Linhagem Celular , Testes para Micronúcleos , Pulmão/efeitos dos fármacos , Pulmão/efeitos da radiação , Pulmão/patologia , Pulmão/metabolismo , Masculino
5.
Life Sci Space Res (Amst) ; 41: 43-51, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670651

RESUMO

Prolonged manned space flight exposure risks to galactic comic radiation, has led to uncertainties in a variety of health risks. Our previous work, utilizing either single ion or multiple ion radiation exposure conducted at the NSRL (NASA Space Radiation Laboratory, Brookhaven, NY) demonstrated that HZE ion components of the GCR result in persistent inflammatory signaling, increased mutations, and higher rates of cancer initiation and progression. With the development of the 33-beam galactic cosmic radiation simulations (GCRsim) at the NSRL, we can more closely test on earth the radiation environment found in space. With a previously used lung cancer susceptible mouse model (K-rasLA-1), we performed acute exposure experiments lasting 1-2 h, and chronic exposure experiments lasting 2-6 weeks with a total dose of 50 cGy and 75 cGy. We obtained histological samples from a subset of mice 100 days post-irradiation, and the remaining mice were monitored for overall survival up to 1-year post-irradiation. When we compared acute exposures (1-2 hrs.) and chronic exposure (2-6 weeks), we found a trend in the increase of lung adenocarcinoma respectively for a total dose of 50 cGy and 75 cGy. Furthermore, when we added neutron exposure to the 75 cGy of GCRsim, we saw a further increase in the incidence of adenocarcinoma. We interpret these findings to suggest that the risks of carcinogenesis are heightened with doses anticipated during a round trip to Mars, and this risk is magnified when coupled with extra neutron exposure that are expected on the Martian surface. We also observed that risks are reduced when the NASA official 33-beam GCR simulations are provided at high dose rates compared to low dose rates.


Assuntos
Radiação Cósmica , Progressão da Doença , Neoplasias Pulmonares , Neoplasias Induzidas por Radiação , Animais , Radiação Cósmica/efeitos adversos , Camundongos , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/patologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Voo Espacial , Feminino , Masculino
6.
Nat Commun ; 15(1): 672, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253555

RESUMO

There are few effective treatments for small cell lung cancer (SCLC) underscoring the need for innovative therapeutic approaches. This study focuses on exploiting telomerase, a critical SCLC dependency as a therapeutic target. A prominent characteristic of SCLC is their reliance on telomerase activity, a key enzyme essential for their continuous proliferation. Here we utilize a nucleoside analog, 6-Thio-2'-deoxyguanosine (6TdG) currently in phase II clinical trials, that is preferentially incorporated by telomerase into telomeres leading to telomere dysfunction. Using preclinical mouse and human derived models we find low intermittent doses of 6TdG inhibit tumor growth and reduce metastatic burden. Anti-tumor efficacy correlates with a reduction in a subpopulation of cancer initiating like cells (CICs) identified by their expression of L1CAM/CD133 and highest telomerase activity. 6TdG treatment also leads to activation of innate and adaptive anti-tumor responses. Mechanistically, 6TdG depletes CICs and induces type-I interferon signaling leading to tumor immune visibility by activating tumor cell STING signaling. We also observe increased sensitivity to irradiation after 6TdG treatment in both syngeneic and humanized SCLC xenograft models both of which are dependent on the presence of host immune cells. This study underscores the immune-enhancing and metastasis-reducing effects of 6TdG, employing a range of complementary in vitro and in vivo SCLC preclinical models providing a potential therapeutic approach to SCLC.


Assuntos
Desoxiguanosina/análogos & derivados , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Telomerase , Tionucleosídeos , Humanos , Animais , Camundongos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Telômero
7.
Mol Cancer Ther ; 22(6): 737-750, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070671

RESUMO

A select group of patients with hepatocellular carcinomas (HCC) benefit from surgical, radiologic, and systemic therapies that include a combination of anti-angiogenic and immune-checkpoint inhibitors. However, because HCC is generally asymptomatic in its early stages, this not only leads to late diagnosis, but also to therapy resistance. The nucleoside analogue 6-thio-dG (THIO) is a first-in-class telomerase-mediated telomere-targeting anticancer agent. In telomerase expressing cancer cells, THIO is converted into the corresponding 5'-triphosphate, which is efficiently incorporated into telomeres by telomerase, activating telomere damage responses and apoptotic pathways. Here, we show how THIO is effective in controlling tumor growth and, when combined with immune checkpoint inhibitors, is even more effective in a T-cell-dependent manner. We also show telomere stress induced by THIO increases both innate sensing and adaptive antitumor immunity in HCC. Importantly, the extracellular high-mobility group box 1 protein acts as a prototypical endogenous DAMP (Damage Associated Molecular Pattern) in eliciting adaptive immunity by THIO. These results provide a strong rationale for combining telomere-targeted therapy with immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Telomerase , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Telomerase/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Telômero/genética , Imunidade Adaptativa
8.
Cancer Cell ; 39(1): 109-121.e5, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33338427

RESUMO

Tumors with defective mismatch repair (dMMR) are responsive to immunotherapy because of dMMR-induced neoantigens and activation of the cGAS-STING pathway. While neoantigens result from the hypermutable nature of dMMR, it is unknown how dMMR activates the cGAS-STING pathway. We show here that loss of the MutLα subunit MLH1, whose defect is responsible for ~50% of dMMR cancers, results in loss of MutLα-specific regulation of exonuclease 1 (Exo1) during DNA repair. This leads to unrestrained DNA excision by Exo1, which causes increased single-strand DNA formation, RPA exhaustion, DNA breaks, and aberrant DNA repair intermediates. Ultimately, this generates chromosomal abnormalities and the release of nuclear DNA into the cytoplasm, activating the cGAS-STING pathway. In this study, we discovered a hitherto unknown MMR mechanism that modulates genome stability and has implications for cancer therapy.


Assuntos
Aberrações Cromossômicas , Enzimas Reparadoras do DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Proteína 1 Homóloga a MutL/deficiência , Neoplasias/genética , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Simples , Reparo de Erro de Pareamento de DNA , Reparo do DNA , DNA de Cadeia Simples/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteína 1 Homóloga a MutL/metabolismo , Neoplasias/metabolismo , Nucleotidiltransferases/metabolismo , Proteína de Replicação A/metabolismo
9.
Clin Cancer Res ; 27(24): 6800-6814, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34593527

RESUMO

PURPOSE: To investigate the therapeutic role of a novel telomere-directed inhibitor, 6-thio-2'-deoxyguanosine (THIO) in gliomas both in vitro and in vivo. EXPERIMENTAL DESIGN: A panel of human and mouse glioma cell lines was used to test therapeutic efficacy of THIO using cell viability assays, flow cytometric analyses, and immunofluorescence. Integrated analyses of RNA sequencing and reverse-phase protein array data revealed the potential antitumor mechanisms of THIO. Four patient-derived xenografts (PDX), two patient-derived organoids (PDO), and two xenografts of human glioma cell lines were used to further investigate the therapeutic efficacy of THIO. RESULTS: THIO was effective in the majority of human and mouse glioma cell lines with no obvious toxicity against normal astrocytes. THIO as a monotherapy demonstrated efficacy in three glioma cell lines that had acquired resistance to temozolomide. In addition, THIO showed efficacy in four human glioma cell lines grown as neurospheres by inducing apoptotic cell death. Mechanistically, THIO induced telomeric DNA damage not only in glioma cell lines but also in PDX tumor specimens. Integrated computational analyses of transcriptomic and proteomic data indicated that THIO significantly inhibited cell invasion, stem cell, and proliferation pathways while triggering DNA damage and apoptosis. Importantly, THIO significantly decreased tumor proliferation in two PDO models and reduced the tumor size of a glioblastoma xenograft and a PDX model. CONCLUSIONS: The current study established the therapeutic role of THIO in primary and recurrent gliomas and revealed the acute induction of telomeric DNA damage as a primary antitumor mechanism of THIO in gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Desoxiguanosina/análogos & derivados , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Humanos , Camundongos , Nucleosídeos/uso terapêutico , Proteômica , Tionucleosídeos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Cell ; 38(3): 400-411.e6, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32619407

RESUMO

Telomerase is an attractive target for anti-tumor therapy as it is almost universally expressed in cancer cells. Here, we show that treatment with a telomere-targeting drug, 6-thio-2'-deoxyguanosine (6-thio-dG), leads to tumor regression through innate and adaptive immune-dependent responses in syngeneic and humanized mouse models of telomerase-expressing cancers. 6-thio-dG treatment causes telomere-associated DNA damages that are sensed by dendritic cells (DCs) and activates the host cytosolic DNA sensing STING/interferon I pathway, resulting in enhanced cross-priming capacity of DCs and tumor-specific CD8+ T cell activation. Moreover, 6-thio-dG overcomes resistance to checkpoint blockade in advanced cancer models. Our results unveil how telomere stress increases innate sensing and adaptive anti-tumor immunity and provide strong rationales for combining telomere-targeting therapy with immunotherapy.


Assuntos
Desoxiguanosina/análogos & derivados , Proteínas de Membrana/imunologia , Neoplasias/tratamento farmacológico , Telomerase/antagonistas & inibidores , Telômero/genética , Tionucleosídeos/farmacologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Desoxiguanosina/farmacologia , Desoxiguanosina/uso terapêutico , Células HCT116 , Humanos , Imunidade Inata/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/genética , Neoplasias/imunologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Telomerase/metabolismo , Telômero/enzimologia , Tionucleosídeos/uso terapêutico , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Carga Tumoral/imunologia
11.
Curr Neuropharmacol ; 17(1): 59-83, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28676012

RESUMO

BACKGROUND: Statins represent a class of medications widely prescribed to efficiently treat dyslipidemia. These drugs inhibit 3-ßhydroxy 3ß-methylglutaryl Coenzyme A reductase (HMGR), the rate-limiting enzyme of mevalonate (MVA) pathway. Besides cholesterol, MVA pathway leads to the production of several other compounds, which are essential in the regulation of a plethora of biological activities, including in the central nervous system. For these reasons, statins are able to induce pleiotropic actions, and acquire increased interest as potential and novel modulators in brain processes, especially during pathological conditions. OBJECTIVE: The purpose of this review is to summarize and examine the current knowledge about pharmacokinetic and pharmacodynamic properties of statins in the brain. In addition, effects of statin on brain diseases are discussed providing the most up-to-date information. METHODS: Relevant scientific information was identified from PubMed database using the following keywords: statins and brain, central nervous system, neurological diseases, neurodegeneration, brain tumors, mood, stroke. RESULTS: 315 scientific articles were selected and analyzed for the writing of this review article. Several papers highlighted that statin treatment is effective in preventing or ameliorating the symptomatology of a number of brain pathologies. However, other studies failed to demonstrate a neuroprotective effect. CONCLUSION: Even though considerable research studies suggest pivotal functional outcomes induced by statin therapy, additional investigation is required to better determine the pharmacological effectiveness of statins in the brain, and support their clinical use in the management of different neuropathologies.


Assuntos
Encefalopatias/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Animais , Encéfalo/metabolismo , Encefalopatias/metabolismo , Encefalopatias/prevenção & controle , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa