Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Hum Mol Genet ; 32(5): 810-824, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36164730

RESUMO

Aminoacyl-tRNA synthetases are essential enzymes responsible for charging amino acids onto cognate tRNAs during protein synthesis. In histidyl-tRNA synthetase (HARS), autosomal dominant mutations V133F, V155G, Y330C and S356N in the HARS catalytic domain cause Charcot-Marie-Tooth disease type 2 W (CMT2W), while tRNA-binding domain mutation Y454S causes recessive Usher syndrome type IIIB. In a yeast model, all human HARS variants complemented a genomic deletion of the yeast ortholog HTS1 at high expression levels. CMT2W associated mutations, but not Y454S, resulted in reduced growth. We show mistranslation of histidine to glutamine and threonine in V155G and S356N but not Y330C mutants in yeast. Mistranslating V155G and S356N mutants lead to accumulation of insoluble proteins, which was rescued by histidine. Mutants V133F and Y330C showed the most significant growth defect and decreased HARS abundance in cells. Here, histidine supplementation led to insoluble protein aggregation and further reduced viability, indicating histidine toxicity associated with these mutants. V133F proteins displayed reduced thermal stability in vitro, which was rescued by tRNA. Our data will inform future treatment options for HARS patients, where histidine supplementation may either have a toxic or compensating effect depending on the nature of the causative HARS variant.


Assuntos
Aminoacil-tRNA Sintetases , Doença de Charcot-Marie-Tooth , Humanos , Doença de Charcot-Marie-Tooth/genética , Histidina/genética , Saccharomyces cerevisiae/genética , Aminoacil-tRNA Sintetases/genética , Mutação , RNA de Transferência/genética , Suplementos Nutricionais
2.
Am J Hum Genet ; 106(1): 129-136, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31883644

RESUMO

Birth defects occur in up to 3% of all live births and are the leading cause of infant death. Here we present five individuals from four unrelated families, individuals who share similar phenotypes with disease-causal bi-allelic variants in NADSYN1, encoding NAD synthetase 1, the final enzyme of the nicotinamide adenine dinucleotide (NAD) de novo synthesis pathway. Defects range from the isolated absence of both kidneys to multiple malformations of the vertebrae, heart, limbs, and kidney, and no affected individual survived for more than three months postnatally. NAD is an essential coenzyme for numerous cellular processes. Bi-allelic loss-of-function mutations in genes required for the de novo synthesis of NAD were previously identified in individuals with multiple congenital abnormalities affecting the heart, kidney, vertebrae, and limbs. Functional assessments of NADSYN1 missense variants, through a combination of yeast complementation and enzymatic assays, show impaired enzymatic activity and severely reduced NAD levels. Thus, NADSYN1 represents an additional gene required for NAD synthesis during embryogenesis, and NADSYN1 has bi-allelic missense variants that cause NAD deficiency-dependent malformations. Our findings expand the genotypic spectrum of congenital NAD deficiency disorders and further implicate mutation of additional genes involved in de novo NAD synthesis as potential causes of complex birth defects.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Anormalidades Congênitas/etiologia , Insuficiência de Múltiplos Órgãos/etiologia , Mutação de Sentido Incorreto , NAD/deficiência , Alelos , Sequência de Aminoácidos , Anormalidades Congênitas/patologia , Feminino , Genótipo , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Masculino , Insuficiência de Múltiplos Órgãos/patologia , Linhagem , Fenótipo , Gravidez , Homologia de Sequência
3.
Neuropediatrics ; 53(3): 204-207, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34852373

RESUMO

Stroke in infancy is a rare phenomenon but can lead to significant long-term disability. We present the story of a 6-month-old Old Order Amish infant with underlying Williams syndrome, a rare neurodevelopmental disorder caused by a microdeletion, encompassing the elastin gene that produces abnormalities in elastic fibers of the lungs and vessels. This infant presented with lethargy, irritability, and a new-onset generalized tonic-clonic seizure. Brain magnetic resonance imaging (MRI) was consistent with ischemic stroke in the supratentorial regions. MR angiogram demonstrated bilateral narrowing of the internal carotid arteries with "ivy sign," suggestive of Moyamoya. Moyamoya disease/syndrome is a cerebrovascular condition that is associated with progressive stenosis of the intracranial vessels and can cause ischemic stroke in young children. Targeted mutation analysis revealed a homozygous c.1411-2A > G splice site variant in the SAMHD1 gene, consistent with a diagnosis of Aicardi-Goutières syndrome type 5 (AGS5), an autosomal recessive condition with multisystem involvement. In our unique case of infantile stroke with Moyamoya syndrome and dual diagnosis of Williams syndrome and AGS5, both diagnoses likely contributed to the cerebrovascular pathology. This case report highlights the importance of suspecting and testing for multiple genetic abnormalities in children presenting with Moyamoya-related stroke.


Assuntos
Anormalidades Múltiplas , AVC Isquêmico , Doença de Moyamoya , Acidente Vascular Cerebral , Síndrome de Williams , Anormalidades Múltiplas/genética , Doenças Autoimunes do Sistema Nervoso , Criança , Pré-Escolar , Humanos , Lactente , Doença de Moyamoya/complicações , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/genética , Malformações do Sistema Nervoso , Acidente Vascular Cerebral/complicações , Síndrome de Williams/complicações , Síndrome de Williams/genética
4.
Genet Med ; 23(7): 1234-1245, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33824499

RESUMO

PURPOSE: Proline Rich 12 (PRR12) is a gene of unknown function with suspected DNA-binding activity, expressed in developing mice and human brains. Predicted loss-of-function variants in this gene are extremely rare, indicating high intolerance of haploinsufficiency. METHODS: Three individuals with intellectual disability and iris anomalies and truncating de novo PRR12 variants were described previously. We add 21 individuals with similar PRR12 variants identified via matchmaking platforms, bringing the total number to 24. RESULTS: We observed 12 frameshift, 6 nonsense, 1 splice-site, and 2 missense variants and one patient with a gross deletion involving PRR12. Three individuals had additional genetic findings, possibly confounding the phenotype. All patients had developmental impairment. Variable structural eye defects were observed in 12/24 individuals (50%) including anophthalmia, microphthalmia, colobomas, optic nerve and iris abnormalities. Additional common features included hypotonia (61%), heart defects (52%), growth failure (54%), and kidney anomalies (35%). PrediXcan analysis showed that phecodes most strongly associated with reduced predicted PRR12 expression were enriched for eye- (7/30) and kidney- (4/30) phenotypes, such as wet macular degeneration and chronic kidney disease. CONCLUSION: These findings support PRR12 haploinsufficiency as a cause for a novel disorder with a wide clinical spectrum marked chiefly by neurodevelopmental and eye abnormalities.


Assuntos
Haploinsuficiência , Deficiência Intelectual , Animais , Haploinsuficiência/genética , Humanos , Deficiência Intelectual/genética , Camundongos , Hipotonia Muscular , Mutação de Sentido Incorreto , Fenótipo
5.
Genet Med ; 23(2): 384-395, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33173220

RESUMO

PURPOSE: We sought to delineate the genotypic and phenotypic spectrum of female and male individuals with X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). METHODS: Twenty-five individuals (15 males, 10 females) with causative variants in MSL3 were ascertained through exome or genome sequencing at ten different sequencing centers. RESULTS: We identified multiple variant types in MSL3 (ten nonsense, six frameshift, four splice site, three missense, one in-frame-deletion, one multi-exon deletion), most proven to be de novo, and clustering in the terminal eight exons suggesting that truncating variants in the first five exons might be compensated by an alternative MSL3 transcript. Three-dimensional modeling of missense and splice variants indicated that these have a deleterious effect. The main clinical findings comprised developmental delay and intellectual disability ranging from mild to severe. Autism spectrum disorder, muscle tone abnormalities, and macrocephaly were common as well as hearing impairment and gastrointestinal problems. Hypoplasia of the cerebellar vermis emerged as a consistent magnetic resonance image (MRI) finding. Females and males were equally affected. Using facial analysis technology, a recognizable facial gestalt was determined. CONCLUSION: Our aggregated data illustrate the genotypic and phenotypic spectrum of X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Our cohort improves the understanding of disease related morbidity and allows us to propose detailed surveillance guidelines for affected individuals.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtorno do Espectro Autista/genética , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA , Feminino , Genes Ligados ao Cromossomo X , Genótipo , Humanos , Deficiência Intelectual/genética , Masculino , Fenótipo , Sequenciamento do Exoma
6.
Am J Med Genet A ; 185(8): 2507-2513, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33988295

RESUMO

Neonatal Marfan syndrome is a severe, early onset presentation of pathogenic variants in FBN1. Because of the significant cardiac involvement and early mortality, nearly all reported cases have been de novo, and the disorder has not been documented to be inherited from a symptomatic parent. Here, we present a female infant with neonatal Marfan syndrome who was born to a father with Marfan syndrome. Prior to the birth of his daughter, the father had been found to have an FBN1 missense variant of uncertain clinical significance. Initial familial variant testing of the infant did not reveal the same missense variant, but Sanger sequencing of FBN1 subsequently identified a pathogenic splice site variant. The father was then found to have 10%-20% mosaicism for the same splice site variant.


Assuntos
Fibrilina-1/genética , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Mosaicismo , Mutação , Sítios de Splice de RNA , Adulto , Alelos , Ecocardiografia , Evolução Fatal , Feminino , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Genótipo , Humanos , Recém-Nascido , Masculino , Linhagem , Fenótipo , Análise de Sequência de DNA , Avaliação de Sintomas
7.
Hum Mol Genet ; 26(21): 4278-4289, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973161

RESUMO

Defects in neuronal migration cause brain malformations, which are associated with intellectual disability (ID) and epilepsy. Using exome sequencing, we identified compound heterozygous variants (p.Arg71His and p. Leu729ThrfsTer6) in TMTC3, encoding transmembrane and tetratricopeptide repeat containing 3, in four siblings with nocturnal seizures and ID. Three of the four siblings have periventricular nodular heterotopia (PVNH), a common brain malformation caused by failure of neurons to migrate from the ventricular zone to the cortex. Expression analysis using patient-derived cells confirmed reduced TMTC3 transcript levels and loss of the TMTC3 protein compared to parental and control cells. As TMTC3 function is currently unexplored in the brain, we gathered support for a neurobiological role for TMTC3 by generating flies with post-mitotic neuron-specific knockdown of the highly conserved Drosophila melanogaster TMTC3 ortholog, CG4050/tmtc3. Neuron-specific knockdown of tmtc3 in flies resulted in increased susceptibility to induced seizures. Importantly, this phenotype was rescued by neuron-specific expression of human TMTC3, suggesting a role for TMTC3 in seizure biology. In addition, we observed co-localization of TMTC3 in the rat brain with vesicular GABA transporter (VGAT), a presynaptic marker for inhibitory synapses. TMTC3 is localized at VGAT positive pre-synaptic terminals and boutons in the rat hypothalamus and piriform cortex, suggesting a role for TMTC3 in the regulation of GABAergic inhibitory synapses. TMTC3 did not co-localize with Vglut2, a presynaptic marker for excitatory neurons. Our data identified TMTC3 as a synaptic protein that is involved in PVNH with ID and epilepsy, in addition to its previously described association with cobblestone lissencephaly.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Adulto , Animais , Encéfalo/anormalidades , Córtex Cerebral/metabolismo , Drosophila melanogaster , Epilepsia/genética , Epilepsia/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Heterozigoto , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Masculino , Malformações do Sistema Nervoso/metabolismo , Neurônios/metabolismo , Linhagem , Heterotopia Nodular Periventricular/genética , Terminações Pré-Sinápticas , Ratos , Convulsões/metabolismo , Sinapses/metabolismo , Sequenciamento do Exoma
8.
Am J Med Genet A ; 176(4): 925-935, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29436146

RESUMO

SATB2-associated syndrome (SAS) is an autosomal dominant disorder characterized by significant neurodevelopmental disabilities with limited to absent speech, behavioral issues, and craniofacial anomalies. Previous studies have largely been restricted to case reports and small series without in-depth phenotypic characterization or genotype-phenotype correlations. Seventy two study participants were identified as part of the SAS clinical registry. Individuals with a molecularly confirmed diagnosis of SAS were referred after clinical diagnostic testing. In this series we present the most comprehensive phenotypic and genotypic characterization of SAS to date, including prevalence of each clinical feature, neurodevelopmental milestones, and when available, patient management. We confirm that the most distinctive features are neurodevelopmental delay with invariably severely limited speech, abnormalities of the palate (cleft or high-arched), dental anomalies (crowding, macrodontia, abnormal shape), and behavioral issues with or without bone or brain anomalies. This comprehensive clinical characterization will help clinicians with the diagnosis, counseling and management of SAS and help provide families with anticipatory guidance.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Fenótipo , Fatores de Transcrição/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Fácies , Feminino , Estudos de Associação Genética/métodos , Humanos , Lactente , Padrões de Herança , Masculino , Polimorfismo de Nucleotídeo Único , Síndrome , Adulto Jovem
9.
Nature ; 489(7415): 313-7, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22885700

RESUMO

Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (~5%) and SMC3 (<1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the 'used' cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/metabolismo , Histona Desacetilases/genética , Mutação/genética , Proteínas Repressoras/genética , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anáfase , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/química , Cristalografia por Raios X , Proteínas de Ligação a DNA , Feminino , Fibroblastos , Células HeLa , Histona Desacetilases/química , Histona Desacetilases/deficiência , Histona Desacetilases/metabolismo , Humanos , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Prófase , Conformação Proteica , Proteínas/genética , Proteínas Repressoras/química , Proteínas Repressoras/deficiência , Proteínas Repressoras/metabolismo , Transcrição Gênica , Coesinas
10.
Biochemistry ; 56(28): 3619-3631, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28632987

RESUMO

Histidyl-tRNA synthetase (HARS) is a highly conserved translation factor that plays an essential role in protein synthesis. HARS has been implicated in the human syndromes Charcot-Marie-Tooth (CMT) Type 2W and Type IIIB Usher (USH3B). The USH3B mutation, which encodes a Y454S substitution in HARS, is inherited in an autosomal recessive fashion and associated with childhood deafness, blindness, and episodic hallucinations during acute illness. The biochemical basis of the pathophysiologies linked to USH3B is currently unknown. Here, we present a detailed functional comparison of wild-type (WT) and Y454S HARS enzymes. Kinetic parameters for enzymes and canonical substrates were determined using both steady state and rapid kinetics. Enzyme stability was examined using differential scanning fluorimetry. Finally, enzyme functionality in a primary cell culture was assessed. Our results demonstrate that the Y454S substitution leaves HARS amino acid activation, aminoacylation, and tRNAHis binding functions largely intact compared with those of WT HARS, and the mutant enzyme dimerizes like the wild type does. Interestingly, during our investigation, it was revealed that the kinetics of amino acid activation differs from that of the previously characterized bacterial HisRS. Despite the similar kinetics, differential scanning fluorimetry revealed that Y454S is less thermally stable than WT HARS, and cells from Y454S patients grown at elevated temperatures demonstrate diminished levels of protein synthesis compared to those of WT cells. The thermal sensitivity associated with the Y454S mutation represents a biochemical basis for understanding USH3B.


Assuntos
Histidina-tRNA Ligase/genética , Histidina-tRNA Ligase/metabolismo , Mutação Puntual , Síndromes de Usher/enzimologia , Síndromes de Usher/genética , Sequência de Aminoácidos , Aminoacilação , Células Cultivadas , Estabilidade Enzimática , Células HEK293 , Histidina-tRNA Ligase/química , Humanos , Cinética , Modelos Moleculares , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Alinhamento de Sequência , Temperatura , Síndromes de Usher/metabolismo
12.
J Med Genet ; 52(10): 666-75, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26246518

RESUMO

BACKGROUND: Heparan sulfate proteoglycans are vital components of the extracellular matrix and are essential for cellular homeostasis. Many genes are involved in modulating heparan sulfate synthesis, and when these genes are mutated, they can give rise to early-onset developmental disorders affecting multiple body systems. Herein, we describe a consanguineous family of four sibs with a novel disorder, which we designate as seizures-scoliosis-macrocephaly syndrome, characterised by seizures, intellectual disability, hypotonia, scoliosis, macrocephaly, hypertelorism and renal dysfunction. METHODS: Our application of autozygosity mapping and whole-exome sequencing allowed us to identify mutations in the patients. To confirm the autosomal-recessive mode of inheritance, all available family members were genotyped. We also studied the effect of these mutations on protein expression and function in patient cells and using an in vitro system. RESULTS: We identified two homozygous mutations p.Met87Arg and p.Arg95 Cys in exostosin 2, EXT2, a ubiquitously expressed gene that encodes a glycosyltransferase required for heparan sulfate synthesis. In patient cells, we observed diminished EXT2 expression and function. We also performed an in vitro assay to determine which mutation has a larger effect on protein expression and observed reduced EXT2 expression in constructs expressing either one of the mutations but a greater reduction when both residues were mutated. CONCLUSIONS: In short, we have unravelled the genetic basis of a new recessive disorder, seizures-scoliosis-macrocephaly syndrome. Our results have implicated a well-characterised gene in a new developmental disorder and have further illustrated the spectrum of phenotypes that can arise due to errors in glycosylation.


Assuntos
Deficiências do Desenvolvimento/genética , Mutação , N-Acetilglucosaminiltransferases/genética , Convulsões/genética , Adulto , Pré-Escolar , Deficiências do Desenvolvimento/etiologia , Exostose/genética , Feminino , Heparitina Sulfato/metabolismo , Humanos , Masculino , N-Acetilglucosaminiltransferases/deficiência , Linhagem , Convulsões/etiologia , Análise de Sequência de DNA
13.
Epilepsia ; 55(9): e106-11, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25060828

RESUMO

Epilepsy affects approximately 1% of the world's population. Genetic factors and acquired etiologies, as well as a range of environmental triggers, together contribute to epileptogenesis. We have identified a family with three daughters affected with progressive myoclonus epilepsy with ataxia. Clinical details of the onset and progression of the neurologic presentation, epileptic seizures, and the natural history of progression over a 10-year period are described. Using autozygosity genetic mapping, we identified a high likelihood homozygous region on chromosome 7p12.1-7q11.22. We subsequently applied whole-exome sequencing and employed a rare variant prioritization analysis within the homozygous region. We identified p.Tyr276Cys in the potassium channel tetramerization domain-containing seven gene, KCTD7, which is expressed predominantly in the brain. Mutations in this gene have been implicated previously in epileptic phenotypes due to disturbances in potassium channel conductance. Pathogenicity of the mutation was supported by bioinformatic predictive analyses and variant cosegregation within the family. Further biologic validation is necessary to fully characterize the pathogenic mechanisms that explain the phenotypic causes of epilepsy with ataxia in these patients.


Assuntos
Ataxia/genética , Mutação/genética , Epilepsias Mioclônicas Progressivas/genética , Canais de Potássio/genética , Adolescente , Ataxia/complicações , Pré-Escolar , Mapeamento Cromossômico , Cromossomos Humanos Par 7/genética , Cisteína/genética , Eletroencefalografia , Exoma/genética , Feminino , Ligação Genética , Humanos , Lactente , Masculino , Epilepsias Mioclônicas Progressivas/complicações , Tirosina/genética
14.
Neurology ; 102(7): e209258, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38484275

RESUMO

We describe the case of a 19-month-old girl presenting with gross motor delays, hypotonia, diminished deep tendon reflexes, hyperCKaemia, extensive white matter changes on MRI brain, and electromyography studies consistent with myopathy. The differential diagnosis for infantile-onset hypotonia and muscle weakness is broad. It includes numerous subtypes of genetic disorders, including congenital muscular dystrophies, congenital myopathies, congenital myasthenic syndromes, spinal muscular atrophy, single-gene genetic syndromes, and inborn errors of metabolism. We outline our clinical approach leading to the diagnosis of a distinctive genetic neuromuscular condition essential for neurologists and geneticists working with patients of all ages to recognize.


Assuntos
Doenças Musculares , Distrofias Musculares , Substância Branca , Feminino , Humanos , Lactente , Hipotonia Muscular/etiologia , Substância Branca/diagnóstico por imagem , Doenças Musculares/genética , Distrofias Musculares/genética , Raciocínio Clínico
15.
Neuromuscul Disord ; 18(7): 579-82, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18586493

RESUMO

This case report describes a young boy with concomitant genetically-confirmed Duchenne muscular dystrophy and facioscapulohumeral muscular dystrophy with a novel dystrophin mutation in exon 6 and a D4Z4 fragment of 31 kb. This child presented with a more severe phenotype than expected for either individual disease process and underscores the role for thorough diagnostic investigation in identifying atypical clinical presentations.


Assuntos
Transtornos Linfoproliferativos/complicações , Distrofia Muscular Facioescapuloumeral/complicações , Fenótipo , Distrofina/genética , Distrofina/metabolismo , Éxons/genética , Humanos , Lactente , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/patologia , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , Mutação/genética
16.
Brain ; 130(Pt 7): 1929-41, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17522105

RESUMO

We used single nucleotide polymorphism (SNP) microarrays to investigate the cause of a symptomatic epilepsy syndrome in a group of seven distantly related Old Order Mennonite children. Autozygosity mapping was inconclusive, but closer inspection of the data followed by formal SNP copy number analyses showed that all affected patients had homozygous deletions of a single SNP (rs721575) and their parents were hemizygous for this marker. The deleted SNP marked a larger deletion encompassing exons 9-13 of LYK5, which encodes STE20-related adaptor protein, a pseudokinase necessary for proper localization and function of serine/threonine kinase 11 (a.k.a. LKB1). Homozygous LYK5 deletions were associated with polyhydramnios, preterm labour and distinctive craniofacial features. Affected children had large heads, infantile-onset intractable multifocal seizures and severe psychomotor retardation. We designated this condition PMSE syndrome (polyhydramnios, megalencephaly and symptomatic epilepsy). Thirty-eight percent (N = 16) of affected children died during childhood (ages 7 months to 6 years) from medical complications of the disorder, which included status epilepticus, congestive heart failure due to atrial septal defect and hypernatremic dehydration due to diabetes insipidus. A single post-mortem neuropathological study revealed megalencephaly, ventriculomegaly, cytomegaly and extensive vacuolization and astrocytosis of white matter. There was abundant anti-phospho-ribosomal S6 labelling of large cells within the frontal cortex, basal ganglia, hippocampus and spinal cord, consistent with constitutive activation of the mammalian target of rapamycin (mTOR) signalling pathway in brain.


Assuntos
Encéfalo/anormalidades , Epilepsia/genética , Deleção de Genes , Proteínas do Tecido Nervoso/genética , Poli-Hidrâmnios/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Adulto , Sequência de Bases , Encéfalo/patologia , Criança , Pré-Escolar , Mapeamento Cromossômico/métodos , Epilepsia/patologia , Evolução Fatal , Feminino , Genótipo , Humanos , Lactente , Imageamento por Ressonância Magnética , Dados de Sequência Molecular , Fenótipo , Poli-Hidrâmnios/patologia , Polimorfismo de Nucleotídeo Único , Gravidez , Transtornos Psicomotores/genética , Transtornos Psicomotores/patologia , Síndrome
18.
Cilia ; 5: 8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069622

RESUMO

BACKGROUND: Endocrine-cerebro-osteodysplasia (ECO) syndrome [MIM:612651] caused by a recessive mutation (p.R272Q) in Intestinal cell kinase (ICK) shows significant clinical overlap with ciliary disorders. Similarities are strongest between ECO syndrome, the Majewski and Mohr-Majewski short-rib thoracic dysplasia (SRTD) with polydactyly syndromes, and hydrolethalus syndrome. In this study, we present a novel homozygous ICK mutation in a fetus with ECO syndrome and compare the effect of this mutation with the previously reported ICK variant on ciliogenesis and cilium morphology. RESULTS: Through homozygosity mapping and whole-exome sequencing, we identified a second variant (c.358G > T; p.G120C) in ICK in a Turkish fetus presenting with ECO syndrome. In vitro studies of wild-type and mutant mRFP-ICK (p.G120C and p.R272Q) revealed that, in contrast to the wild-type protein that localizes along the ciliary axoneme and/or is present in the ciliary base, mutant proteins rather enrich in the ciliary tip. In addition, immunocytochemistry revealed a decreased number of cilia in ICK p.R272Q-affected cells. CONCLUSIONS: Through identification of a novel ICK mutation, we confirm that disruption of ICK causes ECO syndrome, which clinically overlaps with the spectrum of ciliopathies. Expression of ICK-mutated proteins result in an abnormal ciliary localization compared to wild-type protein. Primary fibroblasts derived from an individual with ECO syndrome display ciliogenesis defects. In aggregate, our findings are consistent with recent reports that show that ICK regulates ciliary biology in vitro and in mice, confirming that ECO syndrome is a severe ciliopathy.

19.
Mol Genet Genomic Med ; 2(1): 73-80, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24498631

RESUMO

Iron-sulfur (Fe-S) clusters are a class of highly conserved and ubiquitous prosthetic groups with unique chemical properties that allow the proteins that contain them, Fe-S proteins, to assist in various key biochemical pathways. Mutations in Fe-S proteins often disrupt Fe-S cluster assembly leading to a spectrum of severe disorders such as Friedreich's ataxia or iron-sulfur cluster assembly enzyme (ISCU) myopathy. Herein, we describe infantile mitochondrial complex II/III deficiency, a novel autosomal recessive mitochondrial disease characterized by lactic acidemia, hypotonia, respiratory chain complex II and III deficiency, multisystem organ failure and abnormal mitochondria. Through autozygosity mapping, exome sequencing, in silico analyses, population studies and functional tests, we identified c.215G>A, p.Arg72Gln in NFS1 as the likely causative mutation. We describe the first disease in man likely caused by deficiency in NFS1, a cysteine desulfurase that is implicated in respiratory chain function and iron maintenance by initiating Fe-S cluster biosynthesis. Our results further demonstrate the importance of sufficient NFS1 expression in human physiology.

20.
Orphanet J Rare Dis ; 8: 126, 2013 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-23957953

RESUMO

BACKGROUND: To elucidate the genetic basis of a novel neurodegenerative disorder in an Old Order Amish pedigree by combining homozygosity mapping with exome sequencing. METHODS AND RESULTS: We identified four individuals with an autosomal recessive condition affecting the central nervous system (CNS). Neuroimaging studies identified progressive global CNS tissue loss presenting early in life, associated with microcephaly, seizures, and psychomotor retardation; based on this, we named the condition Autosomal Recessive Cerebral Atrophy (ARCA). Using two unbiased genetic approaches, homozygosity mapping and exome sequencing, we narrowed the candidate region to chromosome 11q and identified the c.995C > T (p.Thr332Met) mutation in the TMPRSS4 gene. Sanger sequencing of additional relatives confirmed that the c.995C > T genotype segregates with the ARCA phenotype. Residue Thr332 is conserved across species and among various ethnic groups. The mutation is predicted to be deleterious, most likely due to a protein structure alteration as demonstrated with protein modelling. CONCLUSIONS: This novel disease is the first to demonstrate a neurological role for a transmembrane serine proteases family member. This study demonstrates a proof-of-concept whereby combining exome sequencing with homozygosity mapping can find the genetic cause of a rare disease and acquire better understanding of a poorly described protein in human development.


Assuntos
Proteínas de Membrana/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Serina Endopeptidases/genética , Humanos , Imageamento por Ressonância Magnética , Mutação/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa