Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044620

RESUMO

PURPOSE: To develop and evaluate a robust cardiac B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping sequence at 3 T, using Bloch-Siegert shift (BSS)-based preparations. METHODS: A longitudinal magnetization preparation module was designed to encode | B 1 + | $$ \mid {\mathrm{B}}_1^{+}\mid $$ . After magnetization tip-down, off-resonant Fermi pulses, placed symmetrically around two refocusing pulses, induced BSS, followed by tipping back of the magnetization. Bloch simulations were used to optimize refocusing pulse parameters and to assess the mapping sensitivity. Relaxation-induced B 1 + $$ {\mathrm{B}}_1^{+} $$ error was simulated for various T 1 $$ {\mathrm{T}}_1 $$ / T 2 $$ {\mathrm{T}}_2 $$ times. The effective mapping range was determined in phantom experiments, and | B 1 + | $$ \mid {\mathrm{B}}_1^{+}\mid $$ maps were compared to the conventional BSS method and subadiabatic hyperbolic-secant 8 (HS8) pulse-sensitized method. Cardiac B 1 + $$ {\mathrm{B}}_1^{+} $$ maps were acquired in healthy subjects, and evaluated for repeatability and imaging plane intersection consistency. The technique was modified for three-dimensional (3D) acquisition of the whole heart in a single breath-hold, and compared to two-dimensional (2D) acquisition. RESULTS: Simulations indicate that the proposed preparation can be tailored to achieve high mapping sensitivity across various B 1 + $$ {\mathrm{B}}_1^{+} $$ ranges, with maximum sensitivity at the upper B 1 + $$ {\mathrm{B}}_1^{+} $$ range. T 1 $$ {\mathrm{T}}_1 $$ / T 2 $$ {\mathrm{T}}_2 $$ -induced bias did not exceed 5.2 % $$ \% $$ . Experimentally reproduced B 1 + $$ {\mathrm{B}}_1^{+} $$ sensitization closely matched simulations for B 1 + ≥ 0 . 3 B 1 , max + $$ {\mathrm{B}}_1^{+}\ge 0.3{\mathrm{B}}_{1,\max}^{+} $$ (mean difference 0.031 ± $$ \pm $$ 0.022, compared to 0.018 ± $$ \pm $$ 0.025 in the HS8-sensitized method), and showed 20-fold reduction in the standard deviation of repeated scans, compared with conventional BSS B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping, and an equivalent 2-fold reduction compared with HS8-sensitization. Robust cardiac B 1 + $$ {\mathrm{B}}_1^{+} $$ map quality was obtained, with an average test-retest variability of 0.027 ± $$ \pm $$ 0.043 relative to normalized B 1 + $$ {\mathrm{B}}_1^{+} $$ magnitude, and plane intersection bias of 0.052 ± $$ \pm $$ 0.031. 3D acquisitions showed good agreement with 2D scans (mean absolute deviation 0.055 ± $$ \pm $$ 0.061). CONCLUSION: BSS-based preparations enable robust and tailorable 2D/3D cardiac B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping at 3 T in a single breath-hold.

2.
J Magn Reson Imaging ; 55(4): 1043-1059, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34331487

RESUMO

Cardiovascular disease is the leading cause of death and a significant contributor of health care costs. Noninvasive imaging plays an essential role in the management of patients with cardiovascular disease. Cardiac magnetic resonance (MR) can noninvasively assess heart and vascular abnormalities, including biventricular structure/function, blood hemodynamics, myocardial tissue composition, microstructure, perfusion, metabolism, coronary microvascular function, and aortic distensibility/stiffness. Its ability to characterize myocardial tissue composition is unique among alternative imaging modalities in cardiovascular disease. Significant growth in cardiac MR utilization, particularly in Europe in the last decade, has laid the necessary clinical groundwork to position cardiac MR as an important imaging modality in the workup of patients with cardiovascular disease. Although lack of availability, limited training, physician hesitation, and reimbursement issues have hampered widespread clinical adoption of cardiac MR in the United States, growing clinical evidence will ultimately overcome these challenges. Advances in cardiac MR techniques, particularly faster image acquisition, quantitative myocardial tissue characterization, and image analysis have been critical to its growth. In this review article, we discuss recent advances in established and emerging cardiac MR techniques that are expected to strengthen its capability in managing patients with cardiovascular disease. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 1.


Assuntos
Doenças Cardiovasculares , Doenças Cardiovasculares/diagnóstico por imagem , Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Miocárdio
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1468-1471, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086391

RESUMO

With sound pressure levels reaching up to 130 dB, acoustic noise in Magnetic Resonance Imaging (MRI) is one of the main sources of patient discomfort in otherwise one of the safest medical imaging modalities. In this work, a noise prediction-based approach, termed predictive noise cancelling (PNC), is applied, for the first time, to suppress noise in MRI. In PN C the noise from the scanner gradient coils is predicted based on linear time-invariant models, which relate the individual gradient coil (X, Y and Z) input to the acoustic noise output. A model setup was constructed of a custom speaker box and MRI -compatible microphone to demonstrate live noise reduction. Additional tuning steps, including output channel equalization and clock mismatch correction, were performed to maximize noise reduction. A calibration sequence was designed to determine the model and tuning parameters. Analysis of actual scanner noise shows an upper limit of 21 dB noise reduction with the proposed linear model. For the components of a clinical example sequence, the setup demonstrated in-bore live noise reduction of up to 10 dB (7.01 ± 0.31 dB, 6.42 ± 2.04 dB and 9.28 ± 0.26 dB for X, Y and Z gradient coils respectively) in the presence of system imperfections. Clinical relevance - The results indicate promising noise attenuation without the need to modify scanner hardware or compromises in acquisition speed or quality. This has potential to substantially and cost effectively improve patient comfort in clinical MRI.


Assuntos
Acústica , Conforto do Paciente , Desenho de Equipamento , Humanos , Imageamento por Ressonância Magnética/métodos , Ruído/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa