Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(9): 552, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167265

RESUMO

N-doped hollow carbon spheres (NHCSs) with different shell thicknesses are constructed using various amounts of SiO2 precursor. An interconnected framework with diminished wall thickness ensures an efficient and continuous electron transport which helps to enhance the performance of NHCS. Improvement of the electrocatalytic performance was shown in the determination of antibiotic drug chloramphenicol (CAP) due to the unique hollow thin shell morphology, ample defect sites, accessible surface area, higher surface-to-volume ratio and an synergistic effect. Boosted electrocatalytic activity of 1.5 N-doped HCS (1.5 NHCS) was applied to detect CAP with a linear range and detection limit of 1-1150 µM and 0.098 µM (n = 3), respectively, with superior storage stability and considerable sensitivity. These results suggest that the proposed work can be successfully applied to the determination of CAP in milk and water samples.


Assuntos
Antibacterianos , Carbono , Cloranfenicol , Técnicas Eletroquímicas , Limite de Detecção , Leite , Cloranfenicol/análise , Cloranfenicol/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Carbono/química , Antibacterianos/análise , Leite/química , Animais , Poluentes Químicos da Água/análise , Eletrodos , Nitrogênio/química , Dióxido de Silício/química
2.
Chemosphere ; 307(Pt 2): 135771, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35931262

RESUMO

Heteroatom doped mesoporous carbon materials are promising catalysts for the electrochemical sensing application. Herein, we report highly efficient dual heteroatom-doped hexagonal mesoporous carbon (MC) derived from Santa Barbara Amorphous-15 (SBA-15) hard template for the detection of phenolic isomers. The synthesis involves dopamine hydrochloride (DA)/thiophene complex, which helps to attain perfectly retained N and S dual doped mesoporous carbon (NS-MC) framework. NS-MC exhibits higher surface area (951 m2 g-1) as well as higher pore volume (0.12 cm3 g-1) with huge graphitic, pyridinic and thiophenic defective sites which facilitates the well-resolved simultaneous electrochemical detection of phenolic isomers hydroquinone (HQ) and catechol (CC). Our results demonstrate that as-synthesized NS-MC material had a LOD of 0.63 µM and 0.29 µM for HQ and CC, respectively. From the calibration curve, sensitivities of proposed sensor were found to be 9.44, 2.71 µA µM-1 cm-2 and 20.80, 10.02 µA µM-1 cm-2 for HQ and CC, respectively with good linear ranges of 10-45 µM and 45-115 µM for HQ; 2-16 µM and 16-40 µM for CC. The NS-MC modified electrode exhibited good selectivity over various possible interferences. The present investigation reveals that the proposed NS-MC material is a promising metal-free catalyst which boosted to electrochemically detect both HQ and CC, present in the municipal tap as well as natural river stream water samples.


Assuntos
Carbono , Hidroquinonas , Catecóis , Dopamina , Fenóis , Tiofenos , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa