Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 125(11): 533-42, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23799245

RESUMO

One feature of allergic asthma, the EAR (early allergic reaction), is not present in the commonly used mouse models. We therefore investigated the mediators involved in EAR in a guinea-pig in vivo model of allergic airway inflammation. Animals were sensitized using a single OVA (ovalbumin)/alum injection and challenged with aerosolized OVA on day 14. On day 15, airway resistance was assessed after challenge with OVA or MCh (methacholine) using the forced oscillation technique, and lung tissue was prepared for histology. The contribution of mast cell mediators was investigated using inhibitors of the main mast cell mediators [histamine (pyrilamine) and CysLTs (cysteinyl-leukotrienes) (montelukast) and prostanoids (indomethacin)]. OVA-sensitized and challenged animals demonstrated AHR (airway hyper-responsiveness) to MCh, and lung tissue eosinophilic inflammation. Antigen challenge induced a strong EAR in the sensitized animals. Treatment with a single compound, or indomethacin together with pyrilamine or montelukast, did not reduce the antigen-induced airway resistance. In contrast, dual treatment with pyrilamine together with montelukast, or triple inhibitor treatment, attenuated approximately 70% of the EAR. We conclude that, as in humans, the guinea-pig allergic inflammation model exhibits both EAR and AHR, supporting its suitability for in vivo identification of mast cell mediators that contribute to the development of asthma. Moreover, the known mast cell mediators histamine and leukotrienes were major contributors of the EAR. The data also lend further support to the concept that combination therapy with selective inhibitors of key mediators could improve asthma management.


Assuntos
Asma/fisiopatologia , Hiper-Reatividade Brônquica/patologia , Hipersensibilidade/patologia , Mastócitos/imunologia , Acetatos/uso terapêutico , Animais , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/tratamento farmacológico , Constrição Patológica/induzido quimicamente , Constrição Patológica/patologia , Ciclopropanos , Modelos Animais de Doenças , Cobaias , Antagonistas dos Receptores Histamínicos/uso terapêutico , Indometacina/uso terapêutico , Antagonistas de Leucotrienos/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/patologia , Mastócitos/patologia , Ovalbumina/farmacologia , Antagonistas de Prostaglandina/uso terapêutico , Pirilamina/uso terapêutico , Quinolinas/uso terapêutico , Sulfetos
2.
Am J Physiol Lung Cell Mol Physiol ; 303(12): L1027-36, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23043076

RESUMO

Allergic asthma is a chronic inflammatory disease, characterized by airway hyperresponsiveness (AHR), inflammation, and tissue remodeling, in which mast cells play a central role. In the present study, we analyzed how mast cell numbers and localization influence the AHR in a chronic murine model of asthma. C57BL/6 (wild-type) and mast cell-deficient B6.Cg-Kit(W-sh) mice without (Wsh) and with (Wsh+MC) mast cell engraftment were sensitized to and subsequently challenged with ovalbumin for a 91-day period. In wild-type mice, pulmonary mast cells were localized in the submucosa of the central airways, whereas the more abundant mast cells in Wsh+MC mice were found mainly in the alveolar parenchyma. In Wsh+MC, ovalbumin challenge induced a relocation of mast cells from the perivascular space and central airways to the parenchyma. Allergen challenge caused a similar AHR in wild-type and Wsh mice in the resistance of the airways and the pulmonary tissue. In Wsh+MC mice the AHR was more pronounced. The elevated functional responses were partly related to the numbers and localization of connective tissue-type mast cells in the peripheral pulmonary compartments. A mast cell-dependent increase in IgE and IL-33 together with impairment of the IL-23/IL-17 axis was evoked in Wsh and Wsh+MC mice by allergen challenge. This study shows that within the same chronic murine asthma model the development of AHR can be both dependent and independent of mast cells. Moreover, the spatial distribution and number of pulmonary mast cells determine severity and localization of the AHR.


Assuntos
Asma/patologia , Hiper-Reatividade Brônquica/patologia , Pulmão/patologia , Mastócitos/patologia , Alérgenos/efeitos adversos , Animais , Doença Crônica , Modelos Animais de Doenças , Feminino , Imunoglobulina E/sangue , Interleucina-17/análise , Interleucina-23/análise , Interleucina-33 , Interleucinas/análise , Pulmão/química , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Índice de Gravidade de Doença
3.
Nat Commun ; 8: 15504, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28534479

RESUMO

Membrane proteins are targets of most available pharmaceuticals, but they are difficult to produce recombinantly, like many other aggregation-prone proteins. Spiders can produce silk proteins at huge concentrations by sequestering their aggregation-prone regions in micellar structures, where the very soluble N-terminal domain (NT) forms the shell. We hypothesize that fusion to NT could similarly solubilize non-spidroin proteins, and design a charge-reversed mutant (NT*) that is pH insensitive, stabilized and hypersoluble compared to wild-type NT. NT*-transmembrane protein fusions yield up to eight times more of soluble protein in Escherichia coli than fusions with several conventional tags. NT* enables transmembrane peptide purification to homogeneity without chromatography and manufacture of low-cost synthetic lung surfactant that works in an animal model of respiratory disease. NT* also allows efficient expression and purification of non-transmembrane proteins, which are otherwise refractory to recombinant production, and offers a new tool for reluctant proteins in general.


Assuntos
Proteínas Recombinantes/biossíntese , Seda/biossíntese , Tensoativos/química , Animais , Colecistocinina/química , Cromatografia , Dicroísmo Circular , Dimerização , Modelos Animais de Doenças , Escherichia coli/metabolismo , Feminino , Fibroínas/biossíntese , Concentração de Íons de Hidrogênio , Pulmão/patologia , Espectroscopia de Ressonância Magnética , Micelas , Microscopia Eletrônica de Transmissão , Mutagênese Sítio-Dirigida , Mutação , Peptídeos/química , Domínios Proteicos , Coelhos , Transtornos Respiratórios/tratamento farmacológico , Aranhas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa