Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Antimicrob Chemother ; 79(7): 1547-1554, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38727613

RESUMO

INTRODUCTION: Post-kala-azar dermal leishmaniasis (PKDL) arises as a dermal complication following a visceral leishmaniasis (VL) infection. Current treatment options for PKDL are unsatisfactory, and there is a knowledge gap regarding the distribution of antileishmanial compounds within human skin. The present study investigated the skin distribution of miltefosine in PKDL patients, with the aim to improve the understanding of the pharmacokinetics at the skin target site in PKDL. METHODS: Fifty-two PKDL patients underwent treatment with liposomal amphotericin B (20 mg/kg) plus miltefosine (allometric dosing) for 21 days. Plasma concentrations of miltefosine were measured on study days 8, 15, 22 and 30, while a punch skin biopsy was taken on day 22. A physiologically based pharmacokinetic (PBPK) model was developed to evaluate the distribution of miltefosine into the skin. RESULTS: Following the allometric weight-based dosing regimen, median miltefosine concentrations on day 22 were 43.73 µg/g (IQR: 21.94-60.65 µg/g) in skin and 33.29 µg/mL (IQR: 25.9-42.58 µg/mL) in plasma. The median individual concentration ratio of skin to plasma was 1.19 (IQR: 0.79-1.9). In 87% (45/52) of patients, skin exposure was above the suggested EC90 PK target of 10.6 mg/L associated with in vitro susceptibility. Simulations indicated that the residence time of miltefosine in the skin would be more than 2-fold longer than in plasma, estimated by a mean residence time of 604 versus 266 hours, respectively. CONCLUSION: This study provides the first accurate measurements of miltefosine penetration into the skin, demonstrating substantial exposure and prolonged retention of miltefosine within the skin. These findings support the use of miltefosine in cutaneous manifestations of leishmaniasis. In combination with parasitological and clinical data, these results are critical for the future optimization of combination therapies with miltefosine in the treatment of PKDL.


Assuntos
Anfotericina B , Antiprotozoários , Leishmaniose Cutânea , Leishmaniose Visceral , Fosforilcolina , Pele , Humanos , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacocinética , Fosforilcolina/administração & dosagem , Fosforilcolina/uso terapêutico , Antiprotozoários/farmacocinética , Antiprotozoários/administração & dosagem , Antiprotozoários/uso terapêutico , Masculino , Adulto , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Feminino , Pele/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Pessoa de Meia-Idade , Adulto Jovem , Anfotericina B/farmacocinética , Anfotericina B/uso terapêutico , Anfotericina B/administração & dosagem , Adolescente , Ásia Meridional
2.
Mol Pharm ; 16(7): 3053-3064, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31136181

RESUMO

Many inhaled drugs are poorly water soluble, and the dissolution rate is often the rate-limiting step in the overall absorption process. To improve understanding of pulmonary drug dissolution, four poorly soluble inhalation compounds (AZD5423 (a developmental nonsteroidal glucocorticoid), budesonide, fluticasone furoate (FF), and fluticasone propionate (FP)) were administered as suspensions or dry powders to the well-established isolated perfused rat lung (IPL) model. Two particle size distributions (d50 = 1.2 µm and d50 = 2.8 µm) were investigated for AZD5423. The pulmonary absorption rates of the drugs from the suspensions and dry powders were compared with historical absorption data for solutions to improve understanding of the effects of dissolution on the overall pulmonary absorption process for poorly soluble inhaled drugs. A physiologically based biopharmaceutical in silico model was used to analyze the experimental IPL data and to estimate a dissolution parameter ( kex vivo). A similar in silico approach was applied to in vitro dissolution data from the literature to obtain an in vitro dissolution parameter ( kin vitro). When FF, FP, and the larger particles of AZD5423 were administered as suspensions, drug dissolution was the rate-limiting step in the overall absorption process. However, this was not the case for budesonide, which has the highest aqueous solubility (61 µM), and the smaller particles of AZD5423, probably because of the increased surface area available for dissolution (d50 = 1.2 µm). The estimated dissolution parameters were ranked in accordance with the solubility of the drugs, and there was good agreement between kex vivo and kin vitro. The dry powders of all the compounds were absorbed more slowly than the suspensions, indicating that wetting is an important parameter for the dissolution of dry powders. A wetting factor was introduced to the in silico model to explain the difference in absorption profiles between the suspensions and dry powders where AZD5423 had the poorest wettability followed by FP and FF. The IPL model in combination with an in silico model is a useful tool for investigating pulmonary dissolution and improving understanding of dissolution-related parameters for poorly soluble inhaled compounds.


Assuntos
Liberação Controlada de Fármacos , Pulmão/fisiologia , Modelos Biológicos , Absorção pelo Trato Respiratório/efeitos dos fármacos , Solubilidade , Acetamidas/administração & dosagem , Administração por Inalação , Androstadienos/administração & dosagem , Animais , Budesonida/administração & dosagem , Fluticasona/administração & dosagem , Indazóis/administração & dosagem , Pulmão/efeitos dos fármacos , Masculino , Tamanho da Partícula , Pós/farmacocinética , Ratos , Ratos Wistar , Suspensões/farmacocinética , Molhabilidade
3.
Mol Pharm ; 14(1): 340-343, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27983859

RESUMO

This is a reply to the comment on "In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models" by Turner and other Simcyp associates. In the reply we address the major concerns raised by Turner et al. regarding the methodology to compare the predictive performance of the different absorption models and at the same time ensure that the systemic pharmacokinetic input was exactly the same for the different models; the selection of the human effective permeability value of fexofenadine; the adoption of model default values and settings; and how supersaturation/precipitation was handled. In addition, we also further discuss aspects related to differences in in silico models and the potential implications of such differences. Our original report should be viewed as the starting point in a thorough and transparent review of absorption prediction models with the overall aim of improving their application as validated tools for bridging studies of active pharmaceutical ingredients from various sources and origins in a regulatory context. With this reply we encourage other independent investigators to perform further model evaluations of commercial as well as other existing or recently implemented models. This will boost the overall progression of physiologically based biopharmaceutical models for predicting and simulating intestinal drug absorption both in research and development and in a regulatory context.


Assuntos
Fármacos Gastrointestinais/metabolismo , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Preparações Farmacêuticas/metabolismo , Biofarmácia/métodos , Simulação por Computador , Humanos , Modelos Biológicos , Terfenadina/análogos & derivados , Terfenadina/metabolismo
4.
Mol Pharm ; 14(3): 686-698, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28182434

RESUMO

Doxorubicin is an anticancer agent, which binds reversibly to topoisomerase I and II, intercalates to DNA base pairs, and generates free radicals. Doxorubicin has a high tissue:plasma partition coefficient and high intracellular binding to the nucleus and other subcellular compartments. The metabolite doxorubicinol has an extensive tissue distribution. This porcine study investigated whether the traditional implementation of tissue binding, described by the tissue:plasma partition coefficient (Kp,t), could be used to appropriately analyze and/or simulate tissue doxorubicin and doxorubicinol concentrations in healthy pigs, when applying a physiologically based pharmacokinetic (PBPK) model approach, or whether intracellular binding is required in the semi-PBPK model. Two semi-PBPK models were developed and evaluated using doxorubicin and doxorubicinol concentrations in healthy pig blood, bile, and urine and kidney and liver tissues. In the generic semi-PBPK model, tissue binding was described using the conventional Kp,t approach. In the binding-specific semi-PBPK model, tissue binding was described using intracellular binding sites. The best semi-PBPK model was validated against a second data set of healthy pig blood and bile concentrations. Both models could be used for analysis and simulations of biliary and urinary excretion of doxorubicin and doxorubicinol and plasma doxorubicinol concentrations in pigs, but the binding-specific model was better at describing plasma doxorubicin concentrations. Porcine tissue concentrations were 400- to 1250-fold better captured by the binding-specific model. This model adequately predicted plasma doxorubicin concentration-time and biliary doxorubicin excretion profiles against the validation data set. The semi-PBPK models applied were similarly effective for analysis of plasma concentrations and biliary and urinary excretion of doxorubicin and doxorubicinol in healthy pigs. Inclusion of intracellular binding in the doxorubicin semi-PBPK models was important to accurately describe tissue concentrations during in vivo conditions.


Assuntos
Doxorrubicina/farmacocinética , Animais , Bile/metabolismo , Sítios de Ligação , Doxorrubicina/análogos & derivados , Doxorrubicina/metabolismo , Fígado/metabolismo , Modelos Biológicos , Suínos , Distribuição Tecidual/fisiologia
5.
Mol Pharm ; 14(12): 4252-4261, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28920690

RESUMO

Currently, the screening of new drug candidates for intestinal permeation is typically based on in vitro models which give no information regarding regional differences along the gut. When evaluation of intestinal permeability by region is undertaken, two preclinical rat models are commonly used, the Ussing chamber method and single-pass intestinal perfusion (SPIP). To investigate the robustness of in vivo predictions of human intestinal permeability, a set of four model compounds was systematically investigated in both these models, using tissue specimens and segments from the jejunum, ileum, and colon of rats from the same genetic strain. The influence of luminal pH was also determined at two pH levels. Ketoprofen had high and enalaprilat had low effective (Peff) and apparent (Papp) permeability in all three regions and at both pH levels. Metoprolol had high Peff in all regions and at both pHs and high Papp at both pHs and in all regions except the jejunum, where Papp was low. Atenolol had low Peff in all regions and at both pHs, but had high Papp at pH 6.5 and low Papp at pH 7.4. There were good correlations between these rat in situ Peff (SPIP) and human in vivo Peff determined previously for the same compounds by both intestinal perfusion of the jejunum and regional intestinal dosing. The results of this study indicate that both investigated models are suitable for determining the regional permeability of the intestine; however, the SPIP model seems to be the more robust and accurate regional permeability model.


Assuntos
Absorção Fisiológica , Avaliação Pré-Clínica de Medicamentos/métodos , Absorção Intestinal/fisiologia , Modelos Animais , Ratos , Animais , Biofarmácia/métodos , Colo/metabolismo , Concentração de Íons de Hidrogênio , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Masculino , Perfusão/métodos , Permeabilidade , Ratos Wistar
6.
Mol Pharm ; 14(12): 4233-4242, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28737398

RESUMO

Over recent decades there has been an increase in the proportion of BCS class II and IV drug candidates in industrial drug development. To overcome the biopharmaceutical challenges associated with the less favorable properties of solubility and/or intestinal permeation of these substances, the development of formulations containing nanosuspensions of the drugs has been suggested. The intestinal absorption of aprepitant from two nanosuspensions (20 µM and 200 µM total concentrations) in phosphate buffer, one nanosuspension (200 µM) in fasted-state simulated intestinal fluid (FaSSIF), and one solution (20 µM) in FaSSIF was investigated in the rat single-pass intestinal perfusion model. The disappearance flux from the lumen (Jdisapp) was faster for formulations containing a total concentration of aprepitant of 200 µM than for those containing 20 µM, but was unaffected by the presence of vesicles. The flux into the systemic circulation (Japp) and, subsequently, the effective diffusion constant (Deff) were calculated using the plasma concentrations. Japp was, like Jdisapp, faster for the formulations containing higher total concentrations of aprepitant, but was also faster for those containing vesicles (ratios of 2 and 1.5). This suggests that aprepitant is retained in the lumen when presented as nanoparticles in the absence of vesicles. In conclusion, increased numbers of nanoparticles and the presence of vesicles increased the rate of transport and availability of aprepitant in plasma. This effect can be attributed to an increased rate of mass transport through the aqueous boundary layer (ABL) adjacent to the gut wall.


Assuntos
Antieméticos/farmacocinética , Absorção Intestinal , Mucosa Intestinal/metabolismo , Morfolinas/farmacocinética , Animais , Antieméticos/química , Aprepitanto , Disponibilidade Biológica , Biofarmácia/métodos , Química Farmacêutica , Masculino , Modelos Animais , Morfolinas/química , Nanopartículas/química , Perfusão/métodos , Ratos , Ratos Wistar , Solubilidade , Suspensões
7.
Mol Pharm ; 14(12): 4243-4251, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28737406

RESUMO

There is a renewed interest from the pharmaceutical field to develop oral formulations of compounds, such as peptides, oligonucleotides, and polar drugs. However, these often suffer from insufficient absorption across the intestinal mucosal barrier. One approach to circumvent this problem is the use of absorption modifying excipient(s) (AME). This study determined the absorption enhancing effect of four AMEs (sodium dodecyl sulfate, caprate, chitosan, N-acetylcysteine) on five model compounds in a rat jejunal perfusion model. The aim was to correlate the model compound absorption to the blood-to-lumen clearance of the mucosal marker for barrier integrity, 51Cr-EDTA. Sodium dodecyl sulfate and chitosan increased the absorption of the low permeation compounds but had no effect on the high permeation compound, ketoprofen. Caprate and N-acetylcysteine did not affect the absorption of any of the model compounds. The increase in absorption of the model compounds was highly correlated to an increased blood-to-lumen clearance of 51Cr-EDTA, independent of the AME. Thus, 51Cr-EDTA could be used as a general, sensitive, and validated marker molecule for absorption enhancement when developing novel formulations.


Assuntos
Radioisótopos de Cromo/farmacocinética , Ácido Edético/farmacocinética , Excipientes/farmacologia , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Animais , Disponibilidade Biológica , Biofarmácia/métodos , Radioisótopos de Cromo/química , Composição de Medicamentos/métodos , Ácido Edético/química , Mucosa Intestinal/metabolismo , Masculino , Modelos Animais , Perfusão , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Wistar , Dodecilsulfato de Sódio
8.
Mol Pharm ; 14(2): 448-458, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-27997198

RESUMO

Doxorubicin (DOX) delivered in a lipiodol-based emulsion (LIPDOX) or in drug-eluting beads (DEBDOX) is used as palliative treatment in patients with intermediate-stage hepatocellular carcinoma (HCC). The primary objective of this study was to evaluate the in vivo delivery performance of DOX from LIPDOX or DEBDOX in HCC patients using the local and systemic pharmacokinetics of DOX and its main metabolite doxorubicinol (DOXol). Urinary excretion of DOX and DOXol and their short-term safety and antitumor effects were also evaluated. In this open, prospective, nonrandomized multicenter study, LIPDOX (n = 13) or DEBDOX (n = 12) were injected into the feeding arteries of the tumor. Local (vena cava/hepatic vein orifice) and systemic (peripheral vein) plasma concentrations of DOX and DOXol were determined in samples obtained up to 6 h and 7 days after treatment. Tumor response was assessed using computed tomography or magnetic resonance imaging. The Cmax and AUC0-24 h for DOX were 5.6-fold and 2.4-fold higher in LIPDOX vs DEBDOX recipients, respectively (p < 0.001). After 6 h, the respective mean proportions of the dose remaining in the liver or drug-delivery system (DDS) were 49% for LIPDOX and 88% for DEBDOX. LIPDOX releases DOX faster than DEBDOX in HCC patients and provides more extensive local and systemic exposure (AUC) to DOX and DOXol initially (0-7 days). DEBDOX formulation has a release and distribution of DOX that is more restricted and rate controlled than LIPDOX.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Emulsões/uso terapêutico , Óleo Etiodado/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Fígado/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
9.
Mol Pharm ; 13(6): 1763-78, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-26926043

RESUMO

Gastrointestinal (GI) drug absorption is a complex process determined by formulation, physicochemical and biopharmaceutical factors, and GI physiology. Physiologically based in silico absorption models have emerged as a widely used and promising supplement to traditional in vitro assays and preclinical in vivo studies. However, there remains a lack of comparative studies between different models. The aim of this study was to explore the strengths and limitations of the in silico absorption models Simcyp 13.1, GastroPlus 8.0, and GI-Sim 4.1, with respect to their performance in predicting human intestinal drug absorption. This was achieved by adopting an a priori modeling approach and using well-defined input data for 12 drugs associated with incomplete GI absorption and related challenges in predicting the extent of absorption. This approach better mimics the real situation during formulation development where predictive in silico models would be beneficial. Plasma concentration-time profiles for 44 oral drug administrations were calculated by convolution of model-predicted absorption-time profiles and reported pharmacokinetic parameters. Model performance was evaluated by comparing the predicted plasma concentration-time profiles, Cmax, tmax, and exposure (AUC) with observations from clinical studies. The overall prediction accuracies for AUC, given as the absolute average fold error (AAFE) values, were 2.2, 1.6, and 1.3 for Simcyp, GastroPlus, and GI-Sim, respectively. The corresponding AAFE values for Cmax were 2.2, 1.6, and 1.3, respectively, and those for tmax were 1.7, 1.5, and 1.4, respectively. Simcyp was associated with underprediction of AUC and Cmax; the accuracy decreased with decreasing predicted fabs. A tendency for underprediction was also observed for GastroPlus, but there was no correlation with predicted fabs. There were no obvious trends for over- or underprediction for GI-Sim. The models performed similarly in capturing dependencies on dose and particle size. In conclusion, it was shown that all three software packages are useful to guide formulation development. However, as a consequence of the high fraction of inaccurate predictions (prediction error >2-fold) and the clear trend toward decreased accuracy with decreased predicted fabs observed with Simcyp, the results indicate that GI-Sim and GastroPlus perform better than Simcyp in predicting the intestinal absorption of the incompletely absorbed drugs when a higher degree of accuracy is needed. In addition, this study suggests that modeling and simulation research groups should perform systematic model evaluations using their own input data to maximize confidence in model performance and output.


Assuntos
Fármacos Gastrointestinais/metabolismo , Absorção Intestinal/fisiologia , Preparações Farmacêuticas/metabolismo , Administração Oral , Química Farmacêutica/métodos , Simulação por Computador , Humanos , Modelos Biológicos , Solubilidade
10.
Mol Pharm ; 13(9): 3013-21, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27504798

RESUMO

Currently there are only a limited number of determinations of human Peff in the distal small intestine and none in the large intestine. This has hindered the validation of preclinical models with regard to absorption in the distal parts of the intestinal tract, which can be substantial for BCS class II-IV drugs, and drugs formulated into modified-release (MR) dosage forms. To meet this demand, three model drugs (atenolol, metoprolol, and ketoprofen) were dosed in solution intravenously, and into the jejunum, ileum, and colon of 14 healthy volunteers. The Peff of each model drug was then calculated using a validated deconvolution method. The median Peff of atenolol in the jejunum, ileum, and colon was 0.45, 0.15, and 0.013 × 10(-4) cm/s, respectively. The corresponding values for metoprolol were 1.72, 0.72, and 1.30 × 10(-4) cm/s, and for ketoprofen 8.85, 6.53, and 3.37 × 10(-4) cm/s, respectively. This is the first study where the human Peff of model drugs has been determined in all parts of the human intestinal tract in the same subjects. The jejunal values were similar to directly determined values using intestinal single-pass perfusion, indicating that the deconvolution method is a valid approach for determining regional Peff. The values from this study will be highly useful in the validation of preclinical regional absorption models and in silico tools.


Assuntos
Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Adolescente , Adulto , Atenolol/metabolismo , Atenolol/farmacocinética , Colo/metabolismo , Feminino , Humanos , Íleo/metabolismo , Intestino Delgado/metabolismo , Jejuno/metabolismo , Cetoprofeno/metabolismo , Cetoprofeno/farmacocinética , Masculino , Metoprolol/metabolismo , Metoprolol/farmacocinética , Pessoa de Meia-Idade , Permeabilidade , Adulto Jovem
11.
Mol Pharm ; 13(9): 3022-33, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27500599

RESUMO

The development of oral modified-release (MR) dosage forms requires an active pharmaceutical ingredient (API) with a sufficiently high absorption rate in both the small and large intestine. Dogs are commonly used in preclinical evaluation of regional intestinal absorption and in the development of novel MR dosage forms. This study determined regional intestinal effective permeability (Peff) in dogs with the aim to improve regional Peff prediction in humans. Four model drugs, atenolol, enalaprilat, metoprolol, and ketoprofen, were intravenously and regionally dosed twice as a solution into the proximal small intestine (P-SI) and large intestine (LI) of three dogs with intestinal stomas. Based on plasma data from two separate study occasions for each dog, regional Peff values were calculated using a validated intestinal deconvolution method. The determined mean Peff values were 0.62, 0.14, 1.06, and 3.66 × 10(-4) cm/s in the P-SI, and 0.13, 0.02, 1.03, and 2.20 × 10(-4) cm/s in the LI, for atenolol, enalaprilat, metoprolol, and ketoprofen, respectively. The determined P-SI Peff values in dog were highly correlated (R(2) = 0.98) to the historically directly determined human jejunal Peff after a single-pass perfusion. The determined dog P-SI Peff values were also successfully implemented in GI-Sim to predict the risk for overestimation of LI absorption of low permeability drugs. We conclude that the dog intestinal stoma model is a useful preclinical tool for determination of regional intestinal permeability. Still, further studies are recommended to evaluate additional APIs, sources of variability, and formulation types, for more accurate determination of the dog model in the drug development process.


Assuntos
Intestino Grosso/metabolismo , Intestino Delgado/metabolismo , Animais , Atenolol/farmacocinética , Cães , Enalaprilato/farmacocinética , Humanos , Absorção Intestinal , Jejuno/metabolismo , Cetoprofeno/farmacocinética , Masculino , Metoprolol/farmacocinética , Permeabilidade
12.
Mol Pharm ; 12(6): 2026-39, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25919764

RESUMO

Application of information on regional intestinal permeability has been identified as a key aspect of successful pharmaceutical product development. This study presents the results and evaluation of an approach for the indirect estimation of site-specific in vivo intestinal effective permeability (Peff) in humans. Plasma concentration-time profiles from 15 clinical studies that administered drug solutions to specific intestinal regions were collected and analyzed. The intestinal absorption rate for each drug was acquired by deconvolution, using historical intravenous data as reference, and used with the intestinal surface area and the dose remaining in the lumen to estimate the Peff. Forty-three new Peff values were estimated (15 from the proximal small intestine, 11 from the distal small intestine, and 17 from the large intestine) for 14 active pharmaceutical ingredients representing a wide range of biopharmaceutical properties. A good correlation (r(2) = 0.96, slope = 1.24, intercept = 0.030) was established between these indirect jejunal Peff estimates and jejunal Peff measurements determined directly using the single-pass perfusion double balloon technique. On average, Peff estimates from the distal small intestine and large intestine were 90% and 40%, respectively, of those from the proximal small intestine. These results support the use of the evaluated deconvolution method for indirectly estimating regional intestinal Peff in humans. This study presents the first comprehensive data set of estimated human regional intestinal permeability values for a range of drugs. These biopharmaceutical data can be used to improve the accuracy of gastrointestinal absorption predictions used in drug development decision-making.


Assuntos
Mucosa Intestinal/metabolismo , Budesonida/farmacocinética , Colo/citologia , Ciclosporina/farmacocinética , Fenofibrato/análogos & derivados , Fenofibrato/farmacocinética , Humanos , Absorção Intestinal , Dimesilato de Lisdexanfetamina/farmacocinética , Metoprolol/farmacocinética , Nifedipino/farmacocinética , Pirimidinas/farmacocinética , Ranitidina/farmacocinética , Rivastigmina/farmacocinética , Sumatriptana/farmacocinética , Terfenadina/análogos & derivados , Terfenadina/farmacocinética , Teofilina/farmacocinética
13.
Mol Pharm ; 11(4): 1301-13, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24558959

RESUMO

Doxorubicin (DOX) emulsified in Lipiodol (LIP) is used as local palliative treatment for unresectable intermediate stage hepatocellular carcinoma. The objective of this study was to examine the poorly understood effects of the main excipient in the drug delivery system, LIP, alone or together with cyclosporin A (CsA), on the in vivo liver disposition of DOX and its active metabolite doxorubicinol (DOXol). The advanced, multi-sampling-site, acute pig model was used; samples were collected from three blood vessels (v. portae, v. hepatica and v. femoralis), bile and urine. The four treatment groups (TI-TIV) all received two intravenous 5 min infusions of DOX into an ear vein: at 0 and 200 min. Before the second dose, the pigs received a portal vein infusion of saline (TI), LIP (TII), CsA (TIII) or LIP and CsA (TIV). Concentrations of DOX and DOXol were analyzed using UPLC-MS/MS. The developed multicompartment model described the distribution of DOX and DOXol in plasma, bile and urine. LIP did not affect the pharmacokinetics of DOX or DOXol. CsA (TIII and TIV) had no effect on the plasma pharmacokinetics of DOX, but a 2-fold increase in exposure to DOXol and a significant decrease in hepatobiliary clearance of DOX and DOXol were observed. Model simulations supported that CsA inhibits 99% of canalicular biliary secretion of both DOX and DOXol, but does not affect the metabolism of DOX to DOXol. In conclusion, LIP did not directly interact with transporters, enzymes and/or biological membranes important for the hepatobiliary disposition of DOX.


Assuntos
Antibióticos Antineoplásicos/farmacocinética , Bile/metabolismo , Ciclosporina/farmacologia , Doxorrubicina/farmacocinética , Óleo Etiodado/farmacologia , Fígado/metabolismo , Animais , Masculino , Suínos
14.
Mol Pharm ; 11(9): 3097-111, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25055161

RESUMO

The local distribution of 2-hydroxyflutamide (2-HOF) in prostate tissue after a single intraprostatic injection of a novel parenteral modified-release (MR) formulation in patients with localized prostate cancer was estimated using a semiphysiologically based biopharmaceutical model. Plasma concentration-time profiles for 2-HOF were acquired from a phase II study in 24 patients and the dissolution of the MR formulation was investigated in vitro. Human physiological values and the specific physicochemical properties of 2-HOF were obtained from the literature or calculated via established algorithms. A compartmental modeling approach was adopted for tissue and blood in the prostate gland, where the compartments were modeled as a series of concentric spherical shells contouring the centrally positioned depot formulation. Discrete fluid connections between the blood compartments were described by the representative flow of blood, whereas the mass transport of drug from tissue to tissue and tissue to blood was described by a one-dimensional diffusion approximation. An empirical dissolution approach was adopted for the release of 2-HOF from the formulation. The model adequately described the plasma concentration-time profiles of 2-HOF. Predictive simulations indicated that the local tissue concentration of 2-HOF within a distance of 5 mm from the depot formulation was approximately 40 times higher than that of unbound 2-HOF in plasma. The simulations also indicated that spreading the formulation throughout the prostate gland would expose more of the gland and increase the overall release rate of 2-HOF from the given dose. The increased release rate would initially increase the tissue and plasma concentrations but would also reduce the terminal half-life of 2-HOF in plasma. Finally, an in vitro-in vivo correlation of the release of 2-HOF from the parenteral MR formulation was established. This study shows that intraprostatic 2-HOF concentrations are significantly higher than systemic plasma concentrations and that increased distribution of 2-HOF throughout the gland, using strategic imaging-guided administration, is possible. This novel parenteral MR formulation, thus, facilitates good pharmacological effect while minimizing the risk of side effects.


Assuntos
Preparações de Ação Retardada/farmacocinética , Flutamida/análogos & derivados , Próstata/efeitos dos fármacos , Área Sob a Curva , Química Farmacêutica/métodos , Preparações de Ação Retardada/uso terapêutico , Flutamida/sangue , Flutamida/farmacocinética , Flutamida/uso terapêutico , Meia-Vida , Humanos , Masculino , Modelos Biológicos , Neoplasias da Próstata/tratamento farmacológico
15.
Drug Deliv Transl Res ; 14(4): 970-983, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37824040

RESUMO

Novel tumor-on-a-chip approaches are increasingly used to investigate tumor progression and potential treatment options. To improve the effect of any cancer treatment it is important to have an in depth understanding of drug diffusion, penetration through the tumor extracellular matrix and cellular uptake. In this study, we have developed a miniaturized chip where drug diffusion and cellular uptake in different hydrogel environments can be quantified at high resolution using live imaging. Diffusion of doxorubicin was reduced in a biomimetic hydrogel mimicking tissue properties of cirrhotic liver and early stage hepatocellular carcinoma (373 ± 108 µm2/s) as compared to an agarose gel (501 ± 77 µm2/s, p = 0.019). The diffusion was further lowered to 256 ± 30 µm2/s (p = 0.028) by preparing the biomimetic gel in cell media instead of phosphate buffered saline. The addition of liver tumor cells (Huh7 or HepG2) to the gel, at two different densities, did not significantly influence drug diffusion. Clinically relevant and quantifiable doxorubicin concentration gradients (1-20 µM) were established in the chip within one hour. Intracellular increases in doxorubicin fluorescence correlated with decreasing fluorescence of the DNA-binding stain Hoechst 33342 and based on the quantified intracellular uptake of doxorubicin an apparent cell permeability (9.00 ± 0.74 × 10-4 µm/s for HepG2) was determined. Finally, the data derived from the in vitro model were applied to a spatio-temporal tissue concentration model to evaluate the potential clinical impact of a cirrhotic extracellular matrix on doxorubicin diffusion and tumor cell uptake.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Biomimética , Doxorrubicina , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Cirrose Hepática , Hidrogéis/uso terapêutico
16.
CPT Pharmacometrics Syst Pharmacol ; 13(6): 1029-1043, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38576225

RESUMO

Statins are used to reduce liver cholesterol levels but also carry a dose-related risk of skeletal muscle toxicity. Concentrations of statins in plasma are often used to assess efficacy and safety, but because statins are substrates of membrane transporters that are present in diverse tissues, local differences in intracellular tissue concentrations cannot be ruled out. Thus, plasma concentration may not be an adequate indicator of efficacy and toxicity. To bridge this gap, we used physiologically based pharmacokinetic (PBPK) modeling to predict intracellular concentrations of statins. Quantitative data on transporter clearance were scaled from in vitro to in vivo conditions by integrating targeted proteomics and transporter kinetics data. The developed PBPK models, informed by proteomics, suggested that organic anion-transporting polypeptide 2B1 (OATP2B1) and multidrug resistance-associated protein 1 (MRP1) play a pivotal role in the distribution of statins in muscle. Using these PBPK models, we were able to predict the impact of alterations in transporter function due to genotype or drug-drug interactions on statin systemic concentrations and exposure in liver and muscle. These results underscore the potential of proteomics-guided PBPK modeling to scale transporter clearance from in vitro data to real-world implications. It is important to evaluate the role of drug transporters when predicting tissue exposure associated with on- and off-target effects.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Fígado , Modelos Biológicos , Transportadores de Ânions Orgânicos , Proteômica , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Fígado/metabolismo , Proteômica/métodos , Humanos , Transportadores de Ânions Orgânicos/metabolismo , Músculo Esquelético/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Interações Medicamentosas , Distribuição Tecidual , Masculino
18.
Eur J Pharm Biopharm ; 186: 144-159, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37028605

RESUMO

Colon absorption is a key determinant for successful development of extended release and colon targeted drug products. This is the first systematic evaluation of the ability to predict in vivo regional differences in absorption and the extent of colon absorption in humans using mechanistic physiologically based biopharmaceutics modeling (PBBM). A new dataset, consisting of 19 drugs with a wide range of biopharmaceutics properties and extent of colon absorption in humans, was established. Mechanistic predictions of the extent of absorption and plasma exposure after oral, or jejunal and direct colon administration were performed in GastroPlus and GI-Sim using an a priori approach. Two new colon models developed in GI-Sim, were also evaluated to assess if the prediction performance could be improved. Both GastroPlus and GI-Sim met the pre-defined criteria for accurate predictions of regional and colon absorption for high permeability drugs irrespective of formulation type, while the prediction performance was poor for low permeability drugs. For solutions, the two new GI-Sim colon models improved the colon absorption prediction performance for the low permeability drugs while maintaining the accurate prediction performance for the high permeability drugs. In contrast, the prediction performance decreased for non-solutions using the two new colon models. In conclusion, PBBM can be used with sufficient accuracy to predict regional and colon absorption in humans for high permeability drugs in candidate selection as well as early design and development of extended release or colon targeted drug products. The prediction performance of the current models needs to be improved to allow high accuracy predictions for commercial drug product applications including highly accurate predictions of the entire plasma concentration-time profiles as well as for low permeability drugs.


Assuntos
Biofarmácia , Absorção Intestinal , Humanos , Absorção Intestinal/fisiologia , Preparações Farmacêuticas , Permeabilidade , Modelos Biológicos , Solubilidade , Administração Oral
19.
Clin Pharmacol Ther ; 114(4): 825-835, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37376792

RESUMO

A different drug-drug interaction (DDI) scenario may exist in patients with chronic kidney disease (CKD) compared with healthy volunteers (HVs), depending on the interplay between drug-drug and disease (drug-drug-disease interaction (DDDI)). Physiologically-based pharmacokinetic (PBPK) modeling, in lieu of a clinical trial, is a promising tool for evaluating these complex DDDIs in patients. However, the prediction confidence of PBPK modeling in the severe CKD population is still low when nonrenal pathways are involved. More mechanistic virtual disease population and robust validation cases are needed. To this end, we aimed to: (i) understand the implications of severe CKD on statins (atorvastatin, simvastatin, and rosuvastatin) pharmacokinetics (PK) and DDI; and (ii) predict untested clinical scenarios of statin-roxadustat DDI risks in patients to guide suitable dose regimens. A novel virtual severe CKD population was developed incorporating the disease effect on both renal and nonrenal pathways. Drug and disease PBPK models underwent a four-way validation. The verified PBPK models successfully predicted the altered PKs in patients for substrates and inhibitors and recovered the observed statin-rifampicin DDIs in patients and the statin-roxadustat DDIs in HVs within 1.25- and 2-fold error. Further sensitivity analysis revealed that the severe CKD effect on statins PK is mainly mediated by hepatic BCRP for rosuvastatin and OATP1B1/3 for atorvastatin. The magnitude of statin-roxadustat DDI in patients with severe CKD was predicted to be similar to that in HVs. PBPK-guided suitable dose regimens were identified to minimize the risk of side effects or therapeutic failure of statins when co-administered with roxadustat.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Insuficiência Renal Crônica , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Atorvastatina , Rosuvastatina Cálcica/efeitos adversos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Interações Medicamentosas , Modelos Biológicos , Simulação por Computador
20.
Drug Metab Dispos ; 40(12): 2273-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22942316

RESUMO

A set of compounds (n = 30), including traditional cytochrome P450 substrates and compounds from AstraZeneca's compound library, was used in an experimental evaluation of an optimal design approach (ODA) for the estimation of enzyme kinetic parameters (CL(int), V(max), and K(m)). A depletion method previously shown to provide reliable results, the multiple depletion curves method (MDCM), was used as reference. Experiments were conducted with human liver microsomes, and samples were analyzed using liquid chromatography-tandem mass spectrometry. CL(int) estimated with the ODA were in >90% of the cases within a 2-fold difference compared with MDCM estimates. In addition, good agreement was generally seen for V(max) and K(m) estimates between the two methods as >80% of the estimates were within or almost within a 2-fold difference. The variability in V(max) and K(m) estimates were generally higher than for CL(int) estimates. In addition, decreased substrate turnover considerably increased the variability in V(max) and K(m) estimates, whereas only a modest increase was observed for CL(int) estimates. The experimental design of using multiple starting concentrations for the estimation of enzyme kinetics was shown to be appropriate even when there was a limitation to the number of samples. The method allowed for good estimates of CL(int) and also for V(max) and K(m) in many cases. Hence, this approach is a good alternative for the estimation of enzyme kinetic parameters, especially if enzyme saturation and an assessment of a potential risk for nonlinear metabolism are of interest.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/enzimologia , Cromatografia Líquida/métodos , Humanos , Cinética , Microssomos Hepáticos/metabolismo , Projetos de Pesquisa , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa