Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Chem Biol ; 9(2): 126-33, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23292650

RESUMO

Liver X receptors (Lxrα and Lxrß) are ligand-dependent nuclear receptors critical for ventral midbrain neurogenesis in vivo. However, no endogenous midbrain Lxr ligand has so far been identified. Here we used LC/MS and functional assays to identify cholic acid as a new Lxr ligand. Moreover, 24(S),25-epoxycholesterol (24,25-EC) was found to be the most potent and abundant Lxr ligand in the developing mouse midbrain. Both Lxr ligands promoted neural development in an Lxr-dependent manner in zebrafish in vivo. Notably, each ligand selectively regulated the development of distinct midbrain neuronal populations. Whereas cholic acid increased survival and neurogenesis of Brn3a-positive red nucleus neurons, 24,25-EC promoted dopaminergic neurogenesis. These results identify an entirely new class of highly selective and cell type-specific regulators of neurogenesis and neuronal survival. Moreover, 24,25-EC promoted dopaminergic differentiation of embryonic stem cells, suggesting that Lxr ligands may thus contribute to the development of cell replacement and regenerative therapies for Parkinson's disease.


Assuntos
Mesencéfalo/metabolismo , Neurogênese , Receptores Nucleares Órfãos/metabolismo , Animais , Mapeamento Encefálico/métodos , Diferenciação Celular , Núcleo Celular/metabolismo , Colesterol/análogos & derivados , Colesterol/metabolismo , Ácido Cólico/metabolismo , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/citologia , Ligantes , Receptores X do Fígado , Camundongos , Modelos Biológicos , Fatores de Tempo , Transfecção , Peixe-Zebra
2.
J Biol Chem ; 285(7): 4666-79, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-19996111

RESUMO

In this study we have profiled the free sterol content of cerebrospinal fluid by a combination of charge tagging and liquid chromatography-tandem mass spectrometry. Surprisingly, the most abundant cholesterol metabolites were found to be C(27) and C(24) intermediates of the bile acid biosynthetic pathways with structures corresponding to 7alpha-hydroxy-3-oxocholest-4-en-26-oic acid (7.170 +/- 2.826 ng/ml, mean +/- S.D., six subjects), 3beta-hydroxycholest-5-en-26-oic acid (0.416 +/- 0.193 ng/ml), 7alpha,x-dihydroxy-3-oxocholest-4-en-26-oic acid (1.330 +/- 0.543 ng/ml), and 7alpha-hydroxy-3-oxochol-4-en-24-oic acid (0.172 +/- 0.085 ng/ml), and the C(26) sterol 7alpha-hydroxy-26-norcholest-4-ene-3,x-dione (0.204 +/- 0.083 ng/ml), where x is an oxygen atom either on the CD rings or more likely on the C-17 side chain. The ability of intermediates of the bile acid biosynthetic pathways to activate the liver X receptors (LXRs) and the farnesoid X receptor was also evaluated. The acidic cholesterol metabolites 3beta-hydroxycholest-5-en-26-oic acid and 3beta,7alpha-dihydroxycholest-5-en-26-oic acid were found to activate LXR in a luciferase assay, but the major metabolite identified in this study, i.e. 7alpha-hydroxy-3-oxocholest-4-en-26-oic acid, was not an LXR ligand. 7Alpha-hydroxy-3-oxocholest-4-en-26-oic acid is formed from 3beta,7alpha-dihydroxycholest-5-en-26-oic acid in a reaction catalyzed by 3beta-hydroxy-Delta(5)-C(27)-steroid dehydrogenase (HSD3B7), which may thus represent a deactivation pathway of LXR ligands in brain. Significantly, LXR activation has been found to reduce the symptoms of Alzheimer disease (Fan, J., Donkin, J., and Wellington C. (2009) Biofactors 35, 239-248); thus, cholesterol metabolites may play an important role in the etiology of Alzheimer disease.


Assuntos
Ácidos e Sais Biliares/metabolismo , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Esteróis/metabolismo , Ácido Quenodesoxicólico/análogos & derivados , Cromatografia Líquida de Alta Pressão , Humanos , Receptores X do Fígado , Espectrometria de Massas , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores Nucleares Órfãos/metabolismo , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores X de Retinoides/metabolismo
3.
J Steroid Biochem Mol Biol ; 206: 105794, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33246156

RESUMO

Bile acids are the end products of cholesterol metabolism secreted into bile. They are essential for the absorption of lipids and lipid soluble compounds from the intestine. Here we have identified a series of unusual Δ5-unsaturated bile acids in plasma and urine of patients with Smith-Lemli-Opitz syndrome (SLOS), a defect in cholesterol biosynthesis resulting in elevated levels of 7-dehydrocholesterol (7-DHC), an immediate precursor of cholesterol. Using liquid chromatography - mass spectrometry (LC-MS) we have uncovered a pathway of bile acid biosynthesis in SLOS avoiding cholesterol starting with 7-DHC and proceeding through 7-oxo and 7ß-hydroxy intermediates. This pathway also occurs to a minor extent in healthy humans, but elevated levels of pathway intermediates could be responsible for some of the features SLOS. The pathway is also active in SLOS affected pregnancies as revealed by analysis of amniotic fluid. Importantly, intermediates in the pathway, 25-hydroxy-7-oxocholesterol, (25R)26-hydroxy-7-oxocholesterol, 3ß-hydroxy-7-oxocholest-5-en-(25R)26-oic acid and the analogous 7ß-hydroxysterols are modulators of the activity of Smoothened (Smo), an oncoprotein that mediates Hedgehog (Hh) signalling across membranes during embryogenesis and in the regeneration of postembryonic tissue. Computational docking of the 7-oxo and 7ß-hydroxy compounds to the extracellular cysteine rich domain of Smo reveals that they bind in the same groove as both 20S-hydroxycholesterol and cholesterol, known activators of the Hh pathway.


Assuntos
Ácidos e Sais Biliares/biossíntese , Colesterol/biossíntese , Desidrocolesteróis/metabolismo , Síndrome de Smith-Lemli-Opitz/metabolismo , Ácidos e Sais Biliares/genética , Ácidos e Sais Biliares/metabolismo , Colesterol/genética , Colesterol/metabolismo , Cromatografia Líquida , Desidrocolesteróis/química , Humanos , Lipogênese/genética , Espectrometria de Massas , Simulação de Acoplamento Molecular , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/patologia
4.
J Lipid Res ; 51(1): 23-41, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20008121

RESUMO

The formation of bile acids/bile alcohols is of major importance for the maintenance of cholesterol homeostasis. Besides their functions in lipid absorption, bile acids/bile alcohols are regulatory molecules for a number of metabolic processes. Their effects are structure-dependent, and numerous metabolic conversions result in a complex mixture of biologically active and inactive forms. Advanced methods are required to characterize and quantify individual bile acids in these mixtures. A combination of such analyses with analyses of the proteome will be required for a better understanding of mechanisms of action and nature of endogenous ligands. Mass spectrometry is the basic detection technique for effluents from chromatographic columns. Capillary liquid chromatography-mass spectrometry with electrospray ionization provides the highest sensitivity in metabolome analysis. Classical gas chromatography-mass spectrometry is less sensitive but offers extensive structure-dependent fragmentation increasing the specificity in analyses of isobaric isomers of unconjugated bile acids. Depending on the nature of the bile acid/bile alcohol mixture and the range of concentration of individuals, different sample preparation sequences, from simple extractions to group separations and derivatizations, are applicable. We review the methods currently available for the analysis of bile acids in biological fluids and tissues, with emphasis on the combination of liquid and gas phase chromatography with mass spectrometry.


Assuntos
Ácidos e Sais Biliares/análise , Líquidos Corporais/química , Colestanóis/análise , Animais , Ácidos e Sais Biliares/metabolismo , Líquidos Corporais/metabolismo , Colestanóis/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas , Espectrometria de Massas por Ionização por Electrospray
5.
Biochem Biophys Res Commun ; 396(1): 80-4, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20494115

RESUMO

Cholesterol is the precursor of many compounds with functions in the physiology and metabolism of the organism. Methods for the multicomponent analysis of these compounds and their metabolites (metabolomics) are needed to improve our understanding of their roles in different species, organs, cells and metabolic situations and to clarify structure/activity relationships. This review discusses methods based on combinations of ion exchange and reversed-phase separations for sample preparation with derivatization and "charge-tagging" for chromatography-mass spectrometry in qualitative and quantitative characterizations of oxysterol, bile alcohol, bile acid, and steroid hormone metabolomes. Advantages, disadvantages and potential improvements for high-throughput applications are briefly discussed.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Metaboloma , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Humanos
6.
J Lipid Res ; 50(12): 2430-44, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19506304

RESUMO

Pregnenolone (PREG) and dehydroepiandrosterone (DHEA), and their respective sulfated forms PREGS and DHEAS, were among the first steroids to be identified in rodent brain. However, unreliable steroid isolation and solvolysis procedures resulted in errors, particularly in the case of brain steroid sulfates analyzed by radioimmunology or GC-MS of liberated free steroids. By using a solid-phase extraction recycling/elution procedure, allowing the strict separation of sulfated, free, and fatty acid esters of PREG and DHEA, PREGS and DHEAS, unlike free PREG, were not detected in rat and mouse brain and plasma. Conversely, considerable amounts of PREG and DHEA were released from unknown precursor(s) present in the lipoidal fraction, distinct from fatty acid ester conjugates. Chromatographic and mass spectrometric studies of the nature of the precursor(s) showed that autoxidation of brain cholesterol (CHOL) was responsible for the release of PREG and DHEA from the lipoidal fraction. When inappropriate protocols were used, CHOL was also the precursor of PREG and DHEA obtained from the fraction assumed to contain sulfated steroids. In contrast, free PREG was definitely confirmed as an endogenous steroid in rat brain. Our study shows that an early removal of CHOL from brain extracts coupled to well-validated extraction and fractionation procedures are prerequisites for reliable measurements of free and conjugated PREG and DHEA by GC-MS or other indirect methods.


Assuntos
Encéfalo/metabolismo , Colesterol/metabolismo , Desidroepiandrosterona/análise , Pregnenolona/análise , Animais , Química Encefálica , Masculino , Camundongos , Oxirredução , Ratos , Ratos Sprague-Dawley
7.
Mol Immunol ; 45(15): 3947-55, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18657865

RESUMO

Mammalian antimicrobial peptides contribute to the protective barrier against microbes at epithelial surfaces. This study focuses on the promoter of the human CAMP gene, encoding the antimicrobial peptide LL-37, and induction of the gene in the colonic epithelial cell line HT-29. CAMP promoter segments were inserted in front of a luciferase reporter in order to identify regulatory regions. A transcription promoting region was identified and the transcription factor PU.1 of the Ets family was recruited to this region as shown by ChIP analysis. This ties PU.1 to the regulation of human innate epithelial defences for the first time. In addition, the conserved second intron was found to exert a transcription enhancing effect in cooperation with the 3' end of the proximal promoter, and the importance of two upstream AUG codons was examined. Moreover, we here demonstrate that lithocholic acid enhances CAMP transcription, and does so additively with butyrate. Thus, a crosstalk between bacteria and host epithelia of the gut could be partially mediated via these two bacterial products to obtain gut homeostasis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/fisiologia , Butiratos/metabolismo , Colo/metabolismo , Células Epiteliais/metabolismo , Ácido Litocólico/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Transativadores/fisiologia , Peptídeos Catiônicos Antimicrobianos/genética , Sequência de Bases , Butiratos/farmacologia , Catelicidinas , Linhagem Celular , Imunoprecipitação da Cromatina , Colo/citologia , Elementos Facilitadores Genéticos , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Íntrons , Ácido Litocólico/farmacologia , Dados de Sequência Molecular , Regiões Promotoras Genéticas
8.
Neurochem Int ; 52(4-5): 522-40, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18068870

RESUMO

Pregnenolone sulfate (PREGS) has been shown, either at high nanomolar or at micromolar concentrations, to increase neuronal activity by inhibiting GABAergic and by stimulating glutamatergic neurotransmission. PREGS is also a potent modulator of sigma type 1 (sigma1) receptors. It has been proposed that these actions of PREGS underlie its neuropharmacological effects, and in particular its influence on memory processes. On the other hand, the PREGS-mediated increase in neuronal excitability may become dangerous under particular conditions, for example in the case of excitotoxic stress or convulsions. However, the physiopathological significance of these observations has recently been put into question by the failure to detect significant levels of PREGS within the brain and plasma of rats and mice, either by direct analytical methods based on liquid chromatography/mass spectrometry (LC/MS) or enzyme linked immunosorbent assay (ELISA) with specific antibodies against PREGS, or by indirect gas chromatography/mass spectrometry (GC/MS) analysis with improved sample workup. These recent results have not come to the attention of a large number of neurobiologists interested in steroid sulfates. However, although available direct analytical methods have failed to detect levels of PREGS above 0.1-0.3 ng/g in brain tissue, it may be premature to completely exclude the local formation of biologically active PREGS within specific and limited compartments of the nervous system. In contrast to the situation in rodents, significant levels of sulfated 3beta-hydroxysteroids have been measured in human plasma and brain. Previous indirect measures of steroid sulfates by radioimmunoassays (RIA) or GC/MS had detected elevated levels of PREGS in rodent brain. The discrepancies between the results of different assay procedures have revealed the danger of indirect analysis of steroid sulfates. Indeed, PREGS must be solvolyzed/hydrolyzed prior to RIA or GC/MS analysis, and it is the released, unconjugated PREG which is then quantified. Extreme caution needs to be exercised during the preparation of samples for RIA or GC/MS analysis, because the fraction presumed to contain only steroid sulfates can be contaminated by nonpolar components from which PREG is generated by the solvolysis/hydrolysis/derivatization reactions.


Assuntos
Encéfalo/fisiologia , Pregnenolona/fisiologia , Animais , Barreira Hematoencefálica/fisiologia , Química Encefálica , Humanos , Camundongos , Pregnenolona/antagonistas & inibidores , Pregnenolona/metabolismo , Ratos , Receptores de Neurotransmissores/efeitos dos fármacos , Receptores de Neurotransmissores/fisiologia , Sulfatases/metabolismo , Sulfotransferases/metabolismo
9.
Biochem Biophys Res Commun ; 364(4): 743-7, 2007 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17976534

RESUMO

The conversion of cholesterol to bile acids is a key pathway for elimination of cholesterol from the body, thereby reducing the risk of arteriosclerosis. Moderate consumption of ethanol has been shown to have preventive effects on cardiovascular disease and decrease the risk of gallstone formation. In the present study primary human hepatocytes were used to investigate if ethanol affected bile acid synthesis. Hepatocytes were prepared from donor liver (n=11) and treated with ethanol, 7.7 or 50 mM, for 24 h. mRNA levels for enzymes in bile acid synthesis pathways were studied and bile acid synthesis was analyzed. Treatment with 7.7 mM ethanol increased cholic acid synthesis by 20% and treatment with 50 mM ethanol up-regulated cholic acid formation by 60%. The synthesis of cholic acid increased more than that of chenodeoxycholic acid, indicating that the classical pathway for bile acid synthesis was up-regulated. Increased bile acid levels in the cells treated with ethanol were seen after approximately 20 h. mRNA expression of CYP7A1, CYP27A1, and CYP8B1 in the hepatocytes was not affected by alcohol exposure.


Assuntos
Ácidos e Sais Biliares/biossíntese , Etanol/administração & dosagem , Hepatócitos/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Hepatócitos/efeitos dos fármacos , Humanos , Regulação para Cima/efeitos dos fármacos
10.
J Am Soc Mass Spectrom ; 17(3): 341-62, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16442307

RESUMO

Oxysterols are oxygenated derivatives of cholesterol. They are intermediates in cholesterol excretion pathways and may also be regarded as transport forms of cholesterol. The introduction of additional hydroxyl groups to the cholesterol skeleton facilitates the flux of oxysterols across the blood brain barrier, and oxysterols have been implicated in mediating a number of cholesterol-induced metabolic effects. Oxysterols are difficult to analyze by atmospheric pressure ionization mass spectrometry on account of the absence of basic or acidic functional groups in their structures. In this communication, we report a method for the derivatization and analysis of oxysterols by electrospray mass spectrometry. Oxysterols with a 3beta-hydroxy-Delta5 structure were converted by cholesterol oxidase to 3-oxo-Delta4 steroids and then derivatized with the Girard P reagent to give Girard P hydrazones, which were subsequently analyzed by tandem mass spectrometry. The improvement in sensitivity for the analysis of 25-hydroxycholesterol upon oxidation and derivatization was over 1000.


Assuntos
Colesterol Oxidase/química , Hidrazonas/análise , Hidrazonas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Esteróis/análise , Esteróis/química , Oxirredução
11.
Steroids ; 71(1): 42-53, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16199070

RESUMO

Neutral steroids are difficult to analyse using desorption ionisation methods coupled with mass spectrometry (MS). However, steroids with an unhindered ketone group can readily be derivatised with the Girard P (GP) reagent to give GP hydrazones. Steroid GP hydrazones contain a quaternary nitrogen atom and are readily desorbed in the matrix-assisted laser desorption/ionisation (MALDI) process, giving an improvement in sensitivity of two orders of magnitude. Steroids without a ketone group, but with a 3beta-hydroxy-Delta5 function, can be readily converted to 3-oxo-Delta4 steroids and subsequently derivatised to GP hydrazones for MALDI analysis. In addition to giving strong [M]+ ions upon MALDI, steroid GP hydrazones give informative post-source decay (PSD) spectra. By using the accurate mass of the precursor-ion measured by MALDI-MS, in combination with the structural information encoded in its PSD spectrum, steroid structures can readily be determined.


Assuntos
Hidrazonas/química , Pregnanolona/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Esteroides/análise , Testosterona/química , Espectrometria de Massas , Estrutura Molecular
12.
J Am Soc Mass Spectrom ; 16(10): 1631-40, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16085421

RESUMO

Accurate mass measurements are often used in the structural determination of unknown compounds of low molecular mass (i.e., below approximately 500 Da). Recently, it has been shown that accurate mass measurements also can be made on small denatured proteins (i.e., M(r), approximately 17,000) to confirm their amino acid composition and identify the presence of isoforms. In the current report, we present nondenaturing electrospray (ES) mass spectrometry data on the direct accurate mass measurement of ligands in complex with the retinoid X receptor ligand binding domain (RXR LBD; M(r) 31,370.92). Average mass errors were below 0.198 Da, 6.3 ppm (standard deviation [SD], 0.146; n = 10) for low-affinity fatty acid agonists analyzed in complex with the RXR LBD. Protein consumption was less than 15 pmol, with fatty acid ligands present at concentrations corresponding to their median effective concentration value (low micromolar, determined in transfection assays). Although determination of fatty acid mass was only sufficiently accurate to give nominal mass values, measurements were of sufficient accuracy to assign fatty acid chain length, degree of unsaturation, or cyclization. Using 17beta-estradiol as a control, the ability to observe specific ligand binding is shown for both high- and low-affinity RXRalpha agonists. In addition, binding of a novel synthetic receptor agonist XCT0315908 to the RXRalpha LBD is reported. This compound showed a high degree of complex formation, and the receptor-ligand complex could be mass measured with an average mass error of -0.024 Da, 0.8 ppm (SD, 0.092; n = 9). Thus, specific binding of both nanomolar and micromolar affinity ligands to a nuclear receptor LBD can be directly observed using nondenaturing ES mass spectrometry and accurate mass measurements additionally can be made on intact complexes in the same experiment. This methodology also is applicable when ligands are present as components of mixtures.


Assuntos
Algoritmos , Ácidos Graxos/análise , Ácidos Graxos/química , Microquímica/métodos , Receptor X Retinoide alfa/análise , Receptor X Retinoide alfa/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sítios de Ligação , Ligantes , Peso Molecular , Ligação Proteica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
J Mass Spectrom ; 40(11): 1448-61, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16258897

RESUMO

Electrospray (ES) mass spectrometry data is presented showing that agonist binding to the nuclear receptor (NR), retinoid X receptor alpha (RXRalpha), is competitive. The competitive nature of agonist binding can be used to discriminate between the specific and non-specific binding of small lipophilic molecules to NRs. Further, data is presented which show that high-affinity ligand binding to the RXRalpha ligand-binding domain (LBD) stabilises the domain homodimer. The results indicate that homodimerisation, a functional property of the receptor associated with the binding of agonist ligands, could be used to discriminate between specific and non-specific binding events. Additionally, we report on the remarkable stability of the gas-phase complex between the RXRalpha LBD protein and endogenous bile acids. Protein-bile acid interactions in the gas phase were found to be surprisingly strong, withstanding 'in-source' fragmentation in the ES interface, and, in the case of taurocholic acid (TCA) and lithocholic acid-3-sulphate (LCA-3-sulphate), collision-induced dissociation within the collision cell of a tandem mass spectrometer. Bile acids were found to be inactive towards RXRalpha in transfection assays, and have not been reported to be ligands for the RXRalpha, although lithocholic acid (LCA) has been found to be a competitor in the photoaffinity labelling of RXRbeta with 9-cis-retinoic acid (9-cis-RA). The observation of strong RXRalpha-bile acid non-covalent complexes in ES mass spectrometry highlight the danger of extrapolating gas-phase binding data to the solution phase and further to a possible biological activity, particularly when surface-active compounds such as bile acids are involved. The introduction of a competitive ligand-binding experiment can alleviate this problem and allow the differentiation between specific and non-specific binding.


Assuntos
Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Receptor X Retinoide alfa/química , Receptor X Retinoide alfa/metabolismo , Dimerização , Ativação Enzimática , Humanos , Ligantes , Estrutura Molecular , Estrutura Quaternária de Proteína , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato
14.
Lipids ; 39(8): 703-22, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15638239

RESUMO

Cholesterol and its metabolites, e.g., steroid hormones and bile acids, constitute a class of compounds of great biological importance. Their chemistry, biochemistry, and regulation in the body have been intensely studied for more than two centuries. The author has studied aspects of the biochemistry and clinical chemistry of steroids and bile acids for more than 50 years, and this paper, which is an extended version of the Schroepfer Medal Award lecture, reviews and discusses part of this work. Development and application of analytical methods based on chromatography and mass spectrometry (MS) have been a central part of many projects, aiming at detailed characterization and quantification of metabolic profiles of steroids and bile acids under different conditions. In present terminology, much of the work may be termed steroidomics and cholanoidomics. Topics discussed are bile acids in human bile and feces, bile acid production, bacterial dehydroxylation of bile acids and steroids during the enterohepatic circulation, profiles of steroid sulfates in plasma of humans and other primates, development of neutral and ion-exchanging lipophilic derivatives of Sephadex for sample preparation and group separation of steroid and bile acid conjugates, profiles of steroids and bile acids in human urine under different conditions, hydroxylation of bile acids in liver disease, effects of alcohol-induced redox changes on steroid synthesis and metabolism, alcohol-induced changes of bile acid biosynthesis, compartmentation of bile acid synthesis studied with 3H-labeled ethanol, formation and metabolism of sulfated metabolites of progesterone in human pregnancy, abnormal patterns of these in patients with intrahepatic cholestasis of pregnancy corrected by ursodeoxycholic acid, inherited and acquired defects of bile acid biosynthesis and their treatment, conjugation of bile acids and steroids with N-acetylglucosamine, sulfate-glucuronide double conjugates of hydroxycholesterols, extrahepatic 7alpha-hydroxylation and 3-dehydrogenation of hydroxycholesterols, and extrahepatic formation of C27 bile acids. The final part discusses analysis of free and sulfated steroids in brain tissue by capillary liquid chromatography-electrospray MS and suggests a need for reevaluation of the function of steroid sulfates in rat brain.


Assuntos
Ácidos e Sais Biliares/história , Ácidos e Sais Biliares/metabolismo , Esteroides/história , Esteroides/metabolismo , Animais , Doença , Feminino , História do Século XX , Humanos , Gravidez , Esteroides/análise , Esteroides/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-15100480

RESUMO

Neutral oxosteroids have been derivatised with Girard T and P hydrazine reagents to give the corresponding Girard hydrazone quaternary ammonium salts. Both Girard T (GT) and Girard P (GP) hydrazones of oxosteroids give very intense [M](+) ion signals in electrospray (ES) mass spectra and fragment within the ES interface and collision cell to give characteristic fragment ions. GT and GP derivatives give informative high-energy collision-induced dissociation spectra, from which the structure of the precursor oxosteroid can be determined. Both charge-remote and charge-mediated mechanisms are responsible for the formation of the fragment ions at high collision-energy.


Assuntos
Hidrazonas/química , Cetosteroides/química , Hidrazonas/análise , Cinética , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Testosterona/análogos & derivados , Testosterona/química
16.
J Clin Invest ; 124(11): 4829-42, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25271621

RESUMO

Cholestenoic acids are formed as intermediates in metabolism of cholesterol to bile acids, and the biosynthetic enzymes that generate cholestenoic acids are expressed in the mammalian CNS. Here, we evaluated the cholestenoic acid profile of mammalian cerebrospinal fluid (CSF) and determined that specific cholestenoic acids activate the liver X receptors (LXRs), enhance islet-1 expression in zebrafish, and increase the number of oculomotor neurons in the developing mouse in vitro and in vivo. While 3ß,7α-dihydroxycholest-5-en-26-oic acid (3ß,7α-diHCA) promoted motor neuron survival in an LXR-dependent manner, 3ß-hydroxy-7-oxocholest-5-en-26-oic acid (3ßH,7O-CA) promoted maturation of precursors into islet-1+ cells. Unlike 3ß,7α-diHCA and 3ßH,7O-CA, 3ß-hydroxycholest-5-en-26-oic acid (3ß-HCA) caused motor neuron cell loss in mice. Mutations in CYP7B1 or CYP27A1, which encode enzymes involved in cholestenoic acid metabolism, result in different neurological diseases, hereditary spastic paresis type 5 (SPG5) and cerebrotendinous xanthomatosis (CTX), respectively. SPG5 is characterized by spastic paresis, and similar symptoms may occur in CTX. Analysis of CSF and plasma from patients with SPG5 revealed an excess of the toxic LXR ligand, 3ß-HCA, while patients with CTX and SPG5 exhibited low levels of the survival-promoting LXR ligand 3ß,7α-diHCA. Moreover, 3ß,7α-diHCA prevented the loss of motor neurons induced by 3ß-HCA in the developing mouse midbrain in vivo.Our results indicate that specific cholestenoic acids selectively work on motor neurons, via LXR, to regulate the balance between survival and death.


Assuntos
Colestenos/líquido cefalorraquidiano , Neurônios Motores/fisiologia , Receptores Nucleares Órfãos/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Colestenos/sangue , Feminino , Humanos , Proteínas com Homeodomínio LIM/metabolismo , Receptores X do Fígado , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Paraparesia Espástica/sangue , Paraparesia Espástica/líquido cefalorraquidiano , Fatores de Transcrição/metabolismo , Xantomatose Cerebrotendinosa/sangue , Xantomatose Cerebrotendinosa/líquido cefalorraquidiano , Peixe-Zebra
17.
Mol Biosyst ; 5(5): 529-41, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19381367

RESUMO

In this study two regions of embryonic (E11) mouse central nervous system (CNS) have been profiled for their unesterified sterol content. Using high-performance liquid chromatography (HPLC)-mass spectrometry (MS) and tandem mass spectrometry (MS(n)) low levels of oxysterols (estimated 2-165 ng g(-1) wet weight) were identified in cortex (Ctx) and spinal cord (Sc). The identified oxysterols include 7 alpha-, 7 beta-, 22R-, 24S-, 25- and 27-hydroxycholesterol; 24,25- and 24,27-dihydroxycholesterol; and 24S,25-epoxycholesterol. Of these, 24S-hydroxycholesterol is biosynthesised exclusively in brain. In comparison to adult mouse where the 24S-hydroxycholesterol level is about 40 microg g(-1) in brain the level of 24S-hydroxycholesterol reported here (estimated 26 ng g(-1) in Ctx and 13 ng g(-1) in Sc) is extremely low. Interestingly, the level of 24S,25-epoxycholesterol in both CNS regions (estimated 165 ng g(-1) in Ctx and 91 ng g(-1) in Sc) is somewhat higher than the levels of the hydroxycholesterols. This oxysterol is formed in parallel to cholesterol via a shunt of the mevalonate pathway and its comparatively high abundance may be a reflection of a high rate of cholesterol synthesis at this stage of development. Levels of cholesterol (estimated 1.25 mg g(-1) in Ctx and 1.15 mg g(-1) in Sc) and its precursors were determined by gas chromatography-mass spectrometry (GC-MS). In both CNS regions cholesterol levels were found to be lower than those reported in the adult, but in relation to cholesterol the levels of cholesterol precursors were higher than found in adult indicating a high rate of cholesterol synthesis. In summary, our data provide evidence for the presence of endogenous oxysterols in two brain regions of the developing CNS. Moreover, while most of the enzymes involved in hydroxysterol synthesis are minimally active at E11, our results suggest that the mevalonate pathway is significantly active, opening up the possibility for a function of 24S,25-epoxycholesterol during brain development.


Assuntos
Sistema Nervoso Central/embriologia , Esteróis/análise , Animais , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Colesterol/análise , Colesterol/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Camundongos , Medula Espinal/metabolismo , Esteróis/metabolismo
18.
J Proteome Res ; 7(4): 1606-14, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18303831

RESUMO

In humans, the brain represents only about 2% of the body's mass but contains about one-quarter of the body's free cholesterol. Cholesterol is synthesized de novo in brain and removed by metabolism to oxysterols. 24S-Hydoxycholesterol represents the major metabolic product of cholesterol in brain, being formed via the cytochrome P450 (CYP) enzyme CYP46A1. CYP46A1 is expressed exclusively in brain, normally by neurons. In this study, we investigated the effect of 24S-hydroxycholesterol on the proteome of rat cortical neurons. With the use of two-dimensional liquid chromatography linked to nanoelectrospray tandem mass spectrometry, over 1040 proteins were identified including members of the cholesterol, isoprenoid and fatty acid synthesis pathways. With the use of stable isotope labeling technology, the protein expression patterns of enzymes in these pathways were investigated. 24S-Hydroxycholesterol was found to down-regulate the expression of members of the cholesterol/isoprenoid synthesis pathways including 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (EC 2.3.3.10), diphosphomevalonate decarboxylase (EC 4.1.1.33), isopentenyl-diphosphate delta isomerase (EC 5.3.3.2), farnesyl-diphosphate synthase (Geranyl trans transferase, EC 2.5.1.10), and dedicated sterol synthesis enzymes, farnesyl-diphosphate farnesyltransferase 1 (squalene synthase, EC 2.5.1.21) and methylsterol monooxygenase (EC 1.14.13.72). The expression of many enzymes in the cholesterol/isoprenoid and fatty acid synthesis pathways are regulated by the membrane-bound transcription factors named sterol regulatory element-binding proteins (SREBPs), which themselves are both transcriptionally and post-transcriptionally regulated. The current proteomic data indicates that 24S-hydroxycholesterol down-regulates cholesterol synthesis in neurons, possibly, in a post-transcriptional manner through SREBP-2. In contrast to cholesterol metabolism, enzymes responsible for the synthesis of fatty acids were not found to be down-regulated in neurons treated with 24S-hydroxycholesterol, while apolipoprotein E (apo E), a cholesterol trafficking protein, was found to be up-regulated. Taken together, this data leads to the hypothesis that, in times of cholesterol excess, 24S-hydroxycholesterols signals down-regulation of cholesterol synthesis enzymes through SREBP-2, but up-regulates apo E synthesis (through the liver X receptor) leading to cholesterol storage and restoration of cholesterol balance.


Assuntos
Colesterol/metabolismo , Homeostase/efeitos dos fármacos , Hidroxicolesteróis/farmacologia , Neurônios/efeitos dos fármacos , Proteoma/análise , Animais , Apolipoproteínas E/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Colesterol/biossíntese , Cromatografia Líquida/métodos , Regulação para Baixo/efeitos dos fármacos , Farnesil-Difosfato Farnesiltransferase/metabolismo , Hidroximetilglutaril-CoA Sintase/metabolismo , Immunoblotting , Neurônios/enzimologia , Neurônios/metabolismo , Proteínas/análise , Proteínas/metabolismo , Ratos , Ratos Endogâmicos , Espectrometria de Massas em Tandem/métodos , Regulação para Cima/efeitos dos fármacos
19.
J Proteome Res ; 7(8): 3602-12, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18605750

RESUMO

While the proteome defines the expressed gene products, the metabolome results from reactions controlled by such gene products. Plasma represents an accessible "window" to the metabolome both in regard of availability and content. The wide range of the plasma metabolome, in terms of molecular diversity and abundance, makes its comprehensive analysis challenging. Here we demonstrate an analytical method designed to target one region of the metabolome, that is, oxysterols. Since the discovery of their biological activity as ligands to nuclear receptors there has been a reawakening of interest in oxysterols and their analysis. In addition, the oxysterols, 24S- and 27-hydroxycholesterol, are currently under investigation as potential biomarkers associated with neurodegenerative disorders such as Alzheimer's disease and multiple sclerosis; widespread analysis of these lipids in clinical studies will require the development of robust, sensitive and rapid analytical techniques. In this communication we present results of an investigation of the oxysterols content of human plasma using a newly developed high-performance liquid chromatography-mass spectrometry (HPLC-MS) method incorporating charge-tagging and high-resolution MS. The method has allowed the identification in plasma of monohydroxylated cholesterol molecules, 7alpha-, 24S-, and 27-hydroxycholesterol; the cholestenetriol 7alpha,27-dihydroxycholesterol; and 3beta-hydroxycholest-5-en-27-oic acid and its metabolite 3beta,7alpha-dihydroxycholest-5-en-27-oic acid. The methodology described is also applicable for the analysis of other sterols in plasma, that is, cholesterol, 7-dehydrocholesterol, and desmosterol, as well as cholesterol 5,6- seco-sterols and steroid hormones. Although involving derivatization, sample preparation is straightforward and chromatographic analysis rapid (17 min), while the MS method offers high sensitivity (ng/mL of sterol in plasma, or pg on-column) and specificity. The methodology is suitable for targeted metabolomic analysis of sterols, oxysterols, and steroid hormones opening a "window" to view this region of the metabolome.


Assuntos
Esteróis/sangue , Colesterol Oxidase/química , Cromatografia Líquida de Alta Pressão , Humanos , Hidroxicolesteróis/sangue , Espectrometria de Massas , Oxirredução , Esteróis/química
20.
Anesthesiology ; 106(1): 43-55, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17197844

RESUMO

BACKGROUND: Ropivacaine is mainly eliminated by hepatic metabolism. The authors studied the effect of chronic end-stage liver disease on the pharmacokinetics of ropivacaine. METHODS: Thirteen patients with chronic end-stage liver disease and eight healthy volunteers received a single dose of 0.6 mg/kg ropivacaine intravenously over 30 min. Ropivacaine, 3-hydroxyropivacaine, and 2',6'-pipecoloxylidide were measured in venous plasma and urine. RESULTS: Peak ropivacaine plasma concentrations were similar. Patients with chronic end-stage liver disease had, on average, 60% lower total (P=0.001) and 56% lower unbound plasma clearance (P=0.002), 59% higher steady state volume of distribution (P=0.03), and 4.2-fold longer half-life (P<0.001) of ropivacaine. Of the variation in total ropivacaine clearance, 69% was accounted for by variation in albumin, 57% in prealbumin, 25% in international normalized ratio of plasma thromboplastin time, and 24% in galactose half-life. The patients excreted a larger fraction of the original dose as unchanged ropivacaine (2.1% vs. 0.3%; P<0.001) and a smaller fraction as 3-hydroxyropivacaine (11% vs. 27%; P=0.001). The fraction excreted as 2',6'-pipecoloxylidide (4.7% vs. 5.0%) was similar. CONCLUSIONS: Ropivacaine clearance is decreased in chronic end-stage liver disease. A normal dose can be considered for a single block in patients with liver impairment, because the peak plasma concentrations were essentially similar. When using a postoperative ropivacaine infusion in a patient with end-stage liver disease, the lowest effective dose should be used for the shortest possible time and the patient should be monitored closely, because systemic toxicity cannot be ruled out. Because of wide interindividual differences in pharmacokinetics in patients with liver disease, no definitive dosing instructions can be given.


Assuntos
Amidas/farmacocinética , Anestésicos Locais/farmacocinética , Cirrose Hepática/metabolismo , Adulto , Amidas/efeitos adversos , Colangite Esclerosante/metabolismo , Doença Crônica , Citocromo P-450 CYP1A2/fisiologia , Feminino , Hepatite Autoimune , Humanos , Cirrose Hepática Biliar/metabolismo , Hepatopatias Alcoólicas/metabolismo , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Ropivacaina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa