Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 35(12): 2851-2861, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30325443

RESUMO

Adenosine deaminases (ADAs) play a pivotal role in regulating the level of adenosine, an important signaling molecule that controls a variety of cellular responses. Two distinct ADAs, ADA1 and adenosine deaminase growth factor (ADGF aka ADA2), are known. Cytoplasmic ADA1 plays a key role in purine metabolism and is widely distributed from prokaryotes to mammals. On the other hand, secreted ADGF/ADA2 is a cell-signaling protein that was thought to be present only in multicellular organisms. Here, we discovered a bacterial homologue of ADGF/ADA2. Bacterial and eukaryotic ADGF/ADA2 possess the dimerization and PRB domains characteristic for the family, have nearly identical catalytic sites, and show similar catalytic characteristics. Most surprisingly, the bacterial enzyme has a signal sequence similar to that of eukaryotic ADGF/ADA2 and is specifically secreted into the extracellular space, where it may potentially control the level of extracellular adenosine. This finding provides the first example of evolution of an extracellular eukaryotic signaling protein from a secreted bacterial analogue with identical activity and suggests a potential role of ADGF/ADA2 in bacterial communication.


Assuntos
Adenosina Desaminase/genética , Proteínas de Bactérias/genética , Evolução Molecular , Sequência de Aminoácidos , Proteínas de Drosophila/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Família Multigênica , Filogenia
2.
Cell Mol Life Sci ; 74(3): 555-570, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27663683

RESUMO

At sites of inflammation and tumor growth, the local concentration of extracellular adenosine rapidly increases and plays a role in controlling the immune responses of nearby cells. Adenosine deaminases ADA1 and ADA2 (ADAs) decrease the level of adenosine by converting it to inosine, which serves as a negative feedback mechanism. Mutations in the genes encoding ADAs lead to impaired immune function, which suggests a crucial role for ADAs in immune system regulation. It is not clear why humans and other mammals possess two enzymes with adenosine deaminase activity. Here, we found that ADA2 binds to neutrophils, monocytes, NK cells and B cells that do not express CD26, a receptor for ADA1. Moreover, the analysis of CD4+ T-cell subset revealed that ADA2 specifically binds to regulatory T cells expressing CD39 and lacking the receptor for ADA1. Also, it was found that ADA1 binds to CD16- monocytes, while CD16+ monocytes preferably bind ADA2. A study of the blood samples from ADA2-deficient patients showed a dramatic reduction in the number of lymphocyte subsets and an increased concentration of TNF-α in plasma. Our results suggest the existence of a new mechanism, where the activation and survival of immune cells is regulated through the activities of ADA2 or ADA1 anchored to the cell surface.


Assuntos
Adenosina Desaminase/imunologia , Imunidade Celular , Adenosina Desaminase/deficiência , Animais , Antígenos CD/imunologia , Apirase/imunologia , Linfócitos T CD4-Positivos/imunologia , Fatores de Transcrição Forkhead/imunologia , Humanos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Camundongos , Monócitos/imunologia , Células Mieloides/imunologia , Receptores de IgG/imunologia , Fator de Necrose Tumoral alfa/imunologia
3.
Mol Microbiol ; 102(4): 593-610, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27507539

RESUMO

Three pathogenic species of the genus Yersinia assemble adhesive fimbriae via the FGL-chaperone/usher pathway. Closely related Y. pestis and Y. pseudotuberculosis elaborate the pH6 antigen (Psa), which mediates bacterial attachment to alveolar cells of the lung. Y. enterocolitica, instead, assembles the homologous fimbriae Myf of unknown function. Here, we discovered that Myf, like Psa, specifically recognizes ß1-3- or ß1-4-linked galactose in glycosphingolipids, but completely lacks affinity for phosphatidylcholine, the main receptor for Psa in alveolar cells. The crystal structure of a subunit of Psa (PsaA) complexed with choline together with mutagenesis experiments revealed that PsaA has four phosphatidylcholine binding pockets that enable super-high-avidity binding of Psa-fibres to cell membranes. The pockets are arranged as six tyrosine residues, which are all missing in the MyfA subunit of Myf. Conversely, the crystal structure of the MyfA-galactose complex revealed that the galactose-binding site is more extended in MyfA, enabling tighter binding to lactosyl moieties. Our results suggest that during evolution, Psa has acquired a tyrosine-rich surface that enables it to bind to phosphatidylcholine and mediate adhesion of Y. pestis/pseudotuberculosis to alveolar cells, whereas Myf has specialized as a carbohydrate-binding adhesin, facilitating the attachment of Y. enterocolitica to intestinal cells.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Fímbrias Bacterianas/metabolismo , Yersinia/metabolismo , Adesinas Bacterianas/metabolismo , Sequência de Aminoácidos , Antígenos de Bactérias/genética , Antígenos de Bactérias/ultraestrutura , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Sítios de Ligação , Proteínas de Fímbrias/metabolismo , Chaperonas Moleculares/metabolismo , Tropismo/genética , Virulência/genética , Yersinia enterocolitica/metabolismo , Yersinia pestis/metabolismo , Yersinia pseudotuberculosis/metabolismo
4.
Sci Rep ; 6: 31370, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510152

RESUMO

Enzyme-linked immunosorbent assay (ELISA) is a valuable technique to detect antigens in biological fluids. Horse radish peroxidase (HRP) is one of the most common enzymes used for signal amplification in ELISA. Despite new advances in technology, such as a large-scale production of recombinant enzymes and availability of new detection systems, limited research is devoted to finding alternative enzymes and their substrates to amplify the ELISA signals. Here, HRP-avidin was substituted with the human adenosine deaminase (hADA1)-streptavidin complex and adenosine as a detection system in commercial ELISA kits. The hADA1 ELISA was successfully used to demonstrate that adenosine, bound to A1 and A3 adenosine receptors, increases cytokine secretion by LPS activated monocytes. We show that hADA1-based ELISA has the same sensitivity, and also provides identical results, as HRP ELISA. In addition, the sensitivity of hADA1-based ELISA could be easily adjusted by changing the adenosine concentration and the incubation time. Therefore, hADA1 could be used as a detection enzyme with any commercial ELISA kit with a wide range of concentration of antigens.


Assuntos
Adenosina Desaminase/metabolismo , Adenosina/metabolismo , Biomarcadores/metabolismo , Monócitos/citologia , Adenosina Desaminase/química , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Humanos , Lipopolissacarídeos/efeitos adversos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Sensibilidade e Especificidade , Estreptavidina/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa