Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Rev Mol Cell Biol ; 20(11): 715, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31506602

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nat Rev Mol Cell Biol ; 18(5): 331-337, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28270684

RESUMO

Transcription and chromatin function are regulated by proteins that bind to DNA, nucleosomes or RNA polymerase II, with specific non-coding RNAs (ncRNAs) functioning to modulate their recruitment or activity. Unlike ncRNAs, nascent pre-mRNA was considered to be primarily a passive player in these processes. In this Opinion article, we describe recently identified interactions between nascent pre-mRNAs and regulatory proteins, highlight commonalities between the functions of nascent pre-mRNA and nascent ncRNA, and propose that both types of RNA have an active role in transcription and chromatin regulation.


Assuntos
Cromatina/metabolismo , Transcrição Gênica , Animais , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Humanos , Splicing de RNA , Proteínas Repressoras/metabolismo , Elongação da Transcrição Genética , Fatores de Transcrição
3.
Mol Cell ; 81(14): 2944-2959.e10, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34166609

RESUMO

A number of regulatory factors are recruited to chromatin by specialized RNAs. Whether RNA has a more general role in regulating the interaction of proteins with chromatin has not been determined. We used proteomics methods to measure the global impact of nascent RNA on chromatin in embryonic stem cells. Surprisingly, we found that nascent RNA primarily antagonized the interaction of chromatin modifiers and transcriptional regulators with chromatin. Transcriptional inhibition and RNA degradation induced recruitment of a set of transcriptional regulators, chromatin modifiers, nucleosome remodelers, and regulators of higher-order structure. RNA directly bound to factors, including BAF, NuRD, EHMT1, and INO80 and inhibited their interaction with nucleosomes. The transcriptional elongation factor P-TEFb directly bound pre-mRNA, and its recruitment to chromatin upon Pol II inhibition was regulated by the 7SK ribonucleoprotein complex. We postulate that by antagonizing the interaction of regulatory proteins with chromatin, nascent RNA links transcriptional output with chromatin composition.


Assuntos
Cromatina/metabolismo , RNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Masculino , Camundongos , Nucleossomos/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Ligação Proteica/fisiologia , Proteômica/métodos , RNA Polimerase II/metabolismo , Transcrição Gênica/fisiologia , Fatores de Elongação da Transcrição/metabolismo
4.
PLoS Genet ; 13(11): e1007096, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29155828

RESUMO

Repressors are frequently deployed to limit the transcriptional response to signalling pathways. For example, several co-repressors interact directly with the DNA-binding protein CSL and are proposed to keep target genes silenced in the absence of Notch activity. However, the scope of their contributions remains unclear. To investigate co-repressor activity in the context of this well defined signalling pathway, we have analysed the genome-wide binding profile of the best-characterized CSL co-repressor in Drosophila, Hairless, and of a second CSL interacting repressor, SMRTER. As predicted there was significant overlap between Hairless and its CSL DNA-binding partner, both in Kc cells and in wing discs, where they were predominantly found in chromatin with active enhancer marks. However, while the Hairless complex was widely present at some Notch regulated enhancers in the wing disc, no binding was detected at others, indicating that it is not essential for silencing per se. Further analysis of target enhancers confirmed differential requirements for Hairless. SMRTER binding significantly overlapped with Hairless, rather than complementing it, and many enhancers were apparently co-bound by both factors. Our analysis indicates that the actions of Hairless and SMRTER gate enhancers to Notch activity and to Ecdysone signalling respectively, to ensure that the appropriate levels and timing of target gene expression are achieved.


Assuntos
Proteínas de Drosophila/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Fatores de Transcrição/genética , Animais , Sítios de Ligação , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Genômica , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas Repressoras/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo
5.
EMBO J ; 34(14): 1889-904, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26069324

RESUMO

The conserved Notch pathway functions in diverse developmental and disease-related processes, requiring mechanisms to ensure appropriate target selection and gene activation in each context. To investigate the influence of chromatin organisation and dynamics on the response to Notch signalling, we partitioned Drosophila chromatin using histone modifications and established the preferred chromatin conditions for binding of Su(H), the Notch pathway transcription factor. By manipulating activity of a co-operating factor, Lozenge/Runx, we showed that it can help facilitate these conditions. While many histone modifications were unchanged by Su(H) binding or Notch activation, we detected rapid changes in acetylation of H3K56 at Notch-regulated enhancers. This modification extended over large regions, required the histone acetyl-transferase CBP and was independent of transcription. Such rapid changes in H3K56 acetylation appear to be a conserved indicator of enhancer activation as they also occurred at the mammalian Notch-regulated Hey1 gene and at Drosophila ecdysone-regulated genes. This intriguing example of a core histone modification increasing over short timescales may therefore underpin changes in chromatin accessibility needed to promote transcription following signalling activation.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Histonas/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Acetilação , Animais , Proteínas de Ciclo Celular/genética , DNA Intergênico , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Ecdisona/metabolismo , Regulação da Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Receptores Notch/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
6.
Genome Res ; 26(7): 896-907, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27197219

RESUMO

Polycomb repressive complex 2 (PRC2) modifies chromatin to maintain genes in a repressed state during development. PRC2 is primarily associated with CpG islands at repressed genes and also possesses RNA binding activity. However, the RNAs that bind PRC2 in cells, the subunits that mediate these interactions, and the role of RNA in PRC2 recruitment to chromatin all remain unclear. By performing iCLIP for PRC2 in comparison with other RNA binding proteins, we show here that PRC2 binds nascent RNA at essentially all active genes. Although interacting with RNA promiscuously, PRC2 binding is enriched at specific locations within RNAs, primarily exon-intron boundaries and the 3' UTR. Deletion of other PRC2 subunits reveals that SUZ12 is sufficient to establish this RNA binding profile. Contrary to prevailing models, we also demonstrate that the interaction of PRC2 with RNA or chromatin is mutually antagonistic in cells and in vitro. RNA degradation in cells triggers PRC2 recruitment to CpG islands at active genes. Correspondingly, the release of PRC2 from chromatin in cells increases RNA binding. Consistent with this, RNA and nucleosomes compete for PRC2 binding in vitro. We propose that RNA prevents PRC2 recruitment to chromatin at active genes and that mutual antagonism between RNA and chromatin underlies the pattern of PRC2 chromatin association across the genome.


Assuntos
Cromatina/metabolismo , Complexo Repressor Polycomb 2/fisiologia , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Animais , Células Cultivadas , Éxons , Regulação da Expressão Gênica , Íntrons , Camundongos , Células-Tronco Embrionárias Murinas/fisiologia , Nucleossomos/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica , Estabilidade de RNA
7.
PLoS Pathog ; 11(7): e1005031, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26153983

RESUMO

We show that two host-encoded primary RNAs (pri-miRs) and the corresponding microRNA (miR) clusters--widely reported to have cell transformation-associated activity--are regulated by EBNA3A and EBNA3C. Utilising a variety of EBV-transformed lymphoblastoid cell lines (LCLs) carrying knockout-, revertant- or conditional-EBV recombinants, it was possible to demonstrate unambiguously that EBNA3A and EBNA3C are both required for transactivation of the oncogenic miR-221/miR-222 cluster that is expressed at high levels in multiple human tumours--including lymphoma/leukemia. ChIP, ChIP-seq, and chromosome conformation capture analyses indicate that this activation results from direct targeting of both EBV proteins to chromatin at the miR-221/miR-222 genomic locus and activation via a long-range interaction between enhancer elements and the transcription start site of a long non-coding pri-miR located 28 kb upstream of the miR sequences. Reduced levels of miR-221/miR-222 produced by inactivation or deletion of EBNA3A or EBNA3C resulted in increased expression of the cyclin-dependent kinase inhibitor p57KIP2, a well-established target of miR-221/miR-222. MiR blocking experiments confirmed that miR-221/miR-222 target p57KIP2 expression in LCLs. In contrast, EBNA3A and EBNA3C are necessary to silence the tumour suppressor cluster miR-143/miR-145, but here ChIP-seq suggests that repression is probably indirect. This miR cluster is frequently down-regulated or deleted in human cancer, however, the targets in B cells are unknown. Together these data indicate that EBNA3A and EBNA3C contribute to B cell transformation by inhibiting multiple tumour suppressor proteins, not only by direct repression of protein-encoding genes, but also by the manipulation of host long non-coding pri-miRs and miRs.


Assuntos
Transformação Celular Neoplásica/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , MicroRNAs/genética , Linfócitos B/virologia , Western Blotting , Imunoprecipitação da Cromatina , Inibidor de Quinase Dependente de Ciclina p57/biossíntese , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imunoprecipitação , MicroRNAs/biossíntese , Oncogenes , Reação em Cadeia da Polimerase em Tempo Real
8.
PLoS Pathog ; 9(2): e1003187, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23436997

RESUMO

To explore the role of p16(INK4a) as an intrinsic barrier to B cell transformation by EBV, we transformed primary B cells from an individual homozygous for a deletion in the CDKN2A locus encoding p16(INK4a) and p14(ARF). Using recombinant EBV-BAC viruses expressing conditional EBNA3C (3CHT), we developed a system that allows inactivation of EBNA3C in lymphoblastoid cell lines (LCLs) lacking active p16(INK4a) protein but expressing a functional 14(ARF)-fusion protein (p14/p16). The INK4a locus is epigenetically repressed by EBNA3C--in cooperation with EBNA3A--despite the absence of functional p16(INK4a). Although inactivation of EBNA3C in LCLs from normal B cells leads to an increase in p16(INK4a) and growth arrest, EBNA3C inactivation in the p16(INK4a)-null LCLs has no impact on the rate of proliferation, establishing that the repression of INK4a is a major function of EBNA3C in EBV-driven LCL proliferation. This conditional LCL system allowed us to use microarray analysis to identify and confirm genes regulated specifically by EBNA3C, independently of proliferation changes modulated by the p16(INK4a)-Rb-E2F axis. Infections of normal primary B cells with recombinant EBV-BAC virus from which EBNA3C is deleted or with 3CHT EBV in the absence of activating ligand 4-hydroxytamoxifen, revealed that EBNA3C is necessary to overcome an EBV-driven increase in p16(INK4a) expression and concomitant block to proliferation 2-4 weeks post-infection. If cells are p16(INK4a)-null, functional EBNA3C is dispensable for the outgrowth of LCLs.


Assuntos
Linfócitos B/virologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Repressão Epigenética/genética , Herpesvirus Humano 4/fisiologia , Ativação Linfocitária , Antígenos Virais/genética , Antígenos Virais/metabolismo , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Loci Gênicos , Herpesvirus Humano 4/imunologia , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Cultura Primária de Células , Latência Viral
9.
PLoS Pathog ; 6(6): e1000951, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20548956

RESUMO

As an inhibitor of cyclin-dependent kinases, p16(INK4A) is an important tumour suppressor and inducer of cellular senescence that is often inactivated during the development of cancer by promoter DNA methylation. Using newly established lymphoblastoid cell lines (LCLs) expressing a conditional EBNA3C from recombinant EBV, we demonstrate that EBNA3C inactivation initiates chromatin remodelling that resets the epigenetic status of p16(INK4A) to permit transcriptional activation: the polycomb-associated repressive H3K27me3 histone modification is substantially reduced, while the activation-related mark H3K4me3 is modestly increased. Activation of EBNA3C reverses the distribution of these epigenetic marks, represses p16(INK4A) transcription and allows proliferation. LCLs lacking EBNA3A express relatively high levels of p16(INK4A) and have a similar pattern of histone modifications on p16(INK4A) as produced by the inactivation of EBNA3C. Since binding to the co-repressor of transcription CtBP has been linked to the oncogenic activity of EBNA3A and EBNA3C, we established LCLs with recombinant viruses encoding EBNA3A- and/or EBNA3C-mutants that no longer bind CtBP. These novel LCLs have revealed that the chromatin remodelling and epigenetic repression of p16(INK4A) requires the interaction of both EBNA3A and EBNA3C with CtBP. The repression of p16(INK4A) by latent EBV will not only overcome senescence in infected B cells, but may also pave the way for p16(INK4A) DNA methylation during B cell lymphomagenesis.


Assuntos
Oxirredutases do Álcool/metabolismo , Antígenos Virais/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Oxirredutases do Álcool/genética , Antígenos Virais/genética , Linfócitos B/metabolismo , Linfócitos B/patologia , Western Blotting , Proliferação de Células , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Infecções por Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Citometria de Fluxo , Regulação da Expressão Gênica , Herpesvirus Humano 4/genética , Humanos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional
10.
Int J Cancer ; 125(11): 2728-36, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19521959

RESUMO

It has recently been shown that docetaxel chemotherapy is effective in prolonging life in patients with prostate cancer (PCa). We have investigated potential ways of increasing the effectiveness of chemotherapy in this disease. We have previously reported that sphingosine kinase 1 (SphK1) inhibition is a key step in docetaxel-induced apoptosis in the PC-3 PCa cell line and that pharmacologicalSphK1 inhibition is chemosensitizing in the docetaxel-resistant PCa LNCaP cell line. In this study we have addressed the mechanism of docetaxel-induced apoptosis of PC-3 cells and identified SphK1-dependent and -independent components. We have shown that SphK1 inhibition by docetaxel is a two-step process involving an initial loss of enzyme activity followed by a decrease in SphK1 gene expression. Using hormoneresistant PC-3 and DU145 PCa cells we have demonstrated that both pharmacological and siRNA-mediated SphK1 inhibition leads to a four-fold decrease in the docetaxel IC50 dose. This work points out to potential ways of increasing the effectiveness of chemotherapy for PCa by SphK1 inhibition.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Taxoides/uso terapêutico , Apoptose/efeitos dos fármacos , Western Blotting , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Docetaxel , Citometria de Fluxo , Humanos , Masculino , Neoplasias Hormônio-Dependentes/enzimologia , Neoplasias Hormônio-Dependentes/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa