Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Am J Pathol ; 194(6): 1090-1105, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403162

RESUMO

Changes in the anterior segment of the eye due to type 2 diabetes mellitus (T2DM) are not well-characterized, in part due to the lack of a reliable animal model. This study evaluated changes in the anterior segment, including crystalline lens health, corneal endothelial cell density, aqueous humor metabolites, and ciliary body vasculature, in a rat model of T2DM compared with human eyes. Male Sprague-Dawley rats were fed a high-fat diet (45% fat) or normal diet, and rats fed the high-fat diet were injected with streptozotocin intraperitoneally to generate a model of T2DM. Cataract formation and corneal endothelial cell density were assessed using microscopic analysis. Diabetes-related rat aqueous humor alterations were assessed using metabolomics screening. Transmission electron microscopy was used to assess qualitative ultrastructural changes ciliary process microvessels at the site of aqueous formation in the eyes of diabetic rats and humans. Eyes from the diabetic rats demonstrated cataracts, lower corneal endothelial cell densities, altered aqueous metabolites, and ciliary body ultrastructural changes, including vascular endothelial cell activation, pericyte degeneration, perivascular edema, and basement membrane reduplication. These findings recapitulated diabetic changes in human eyes. These results support the use of this model for studying ocular manifestations of T2DM and support a hypothesis postulating blood-aqueous barrier breakdown and vascular leakage at the ciliary body as a mechanism for diabetic anterior segment pathology.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos Sprague-Dawley , Animais , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Masculino , Ratos , Humanos , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Segmento Anterior do Olho/patologia , Humor Aquoso/metabolismo , Catarata/patologia , Catarata/metabolismo , Cristalino/patologia , Cristalino/metabolismo , Cristalino/ultraestrutura , Corpo Ciliar/patologia , Corpo Ciliar/metabolismo , Dieta Hiperlipídica/efeitos adversos
2.
Nucleic Acids Res ; 44(15): 7120-31, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27418678

RESUMO

MicroRNAs (miRs) have emerged as key biological effectors in human health and disease. These small noncoding RNAs are incorporated into Argonaute (Ago) proteins, where they direct post-transcriptional gene silencing via base-pairing with target transcripts. Although miRs have become intriguing biological entities and attractive therapeutic targets, the translational impacts of miR research remain limited by a paucity of empirical miR targeting data, particularly in human primary tissues. Here, to improve our understanding of the diverse roles miRs play in cardiovascular function and disease, we applied high-throughput methods to globally profile miR:target interactions in human heart tissues. We deciphered Ago2:RNA interactions using crosslinking immunoprecipitation coupled with high-throughput sequencing (HITS-CLIP) to generate the first transcriptome-wide map of miR targeting events in human myocardium, detecting 4000 cardiac Ago2 binding sites across >2200 target transcripts. Our initial exploration of this interactome revealed an abundance of miR target sites in gene coding regions, including several sites pointing to new miR-29 functions in regulating cardiomyocyte calcium, growth and metabolism. Also, we uncovered several clinically-relevant interactions involving common genetic variants that alter miR targeting events in cardiomyopathy-associated genes. Overall, these data provide a critical resource for bolstering translational miR research in heart, and likely beyond.


Assuntos
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Reagentes de Ligações Cruzadas , Imunoprecipitação , MicroRNAs/metabolismo , Miocárdio/metabolismo , Transcriptoma/genética , Regiões 3' não Traduzidas/genética , Sítios de Ligação , Cálcio/metabolismo , Cardiomiopatias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Miocárdio/citologia , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único/genética , Especificidade por Substrato
3.
PLoS Genet ; 11(3): e1005022, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25763846

RESUMO

Epilepsy is a common disabling disease with complex, multifactorial genetic and environmental etiology. The small fraction of epilepsies subject to Mendelian inheritance offers key insight into epilepsy disease mechanisms; and pathologies brought on by mutations in a single gene can point the way to generalizable therapeutic strategies. Mutations in the PRICKLE genes can cause seizures in humans, zebrafish, mice, and flies, suggesting the seizure-suppression pathway is evolutionarily conserved. This pathway has never been targeted for novel anti-seizure treatments. Here, the mammalian PRICKLE-interactome was defined, identifying prickle-interacting proteins that localize to synapses and a novel interacting partner, USP9X, a substrate-specific de-ubiquitinase. PRICKLE and USP9X interact through their carboxy-termini; and USP9X de-ubiquitinates PRICKLE, protecting it from proteasomal degradation. In forebrain neurons of mice, USP9X deficiency reduced levels of Prickle2 protein. Genetic analysis suggests the same pathway regulates Prickle-mediated seizures. The seizure phenotype was suppressed in prickle mutant flies by the small-molecule USP9X inhibitor, Degrasyn/WP1130, or by reducing the dose of fat facets a USP9X orthologue. USP9X mutations were identified by resequencing a cohort of patients with epileptic encephalopathy, one patient harbored a de novo missense mutation and another a novel coding mutation. Both USP9X variants were outside the PRICKLE-interacting domain. These findings demonstrate that USP9X inhibition can suppress prickle-mediated seizure activity, and that USP9X variants may predispose to seizures. These studies point to a new target for anti-seizure therapy and illustrate the translational power of studying diseases in species across the evolutionary spectrum.


Assuntos
Convulsões/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Drosophila melanogaster , Humanos , Espectrometria de Massas , Camundongos , Convulsões/tratamento farmacológico , Ubiquitina Tiolesterase/genética
4.
Ophthalmology ; 124(1): 36-42, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27817919

RESUMO

PURPOSE: To determine the incidence of positive corneoscleral donor rim fungal cultures after keratoplasty and to report clinical outcomes of grafts with culture-positive donor rims. DESIGN: Retrospective cohort study. PARTICIPANTS: Consecutive donor corneas and keratoplasty recipients at a single tertiary referral center over 20 years. METHODS: Patient charts were reviewed to determine the incidence of positive donor rim fungal cultures and clinical outcomes of all grafts using contaminated tissue. MAIN OUTCOME MEASURES: The primary outcome measures were positive donor rim fungal culture results and the development of postkeratoplasty fungal infection using corresponding corneal tissue. The secondary outcome measure was the impact of postoperative prophylaxis on donor tissue-associated infections. RESULTS: A total of 3414 keratoplasty cases were included in the statistical analysis. Seventy-one cases (2.1%) were associated with a fungal culture-positive donor rim. Candida species were cultured in 40 cases (56.3%). There was a higher incidence of positive rim cultures over the last 5 years of the analytic period compared with the first 15 years (P = 0.018). Fungal keratitis developed in 4 cases (5.6%), and all patients required further surgical intervention to achieve cure. There were no cases of fungal endophthalmitis. Empiric antimycotic prophylaxis initiated at the time of positive culture result reduced the incidence of keratitis from 15.8% in untreated cases to 1.9% in treated cases (P = 0.056). CONCLUSIONS: Positive donor rim fungal cultures are uncommon, but carry an unacceptably high risk of postoperative fungal infection. This risk may be reduced with prophylactic antimycotic therapy when culture-positive donor rims are identified.


Assuntos
Córnea/microbiologia , Endoftalmite/epidemiologia , Infecções Oculares Fúngicas/epidemiologia , Fungos/isolamento & purificação , Ceratoplastia Penetrante/efeitos adversos , Complicações Pós-Operatórias/microbiologia , Esclera/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Antibioticoprofilaxia , Criança , Endoftalmite/microbiologia , Infecções Oculares Fúngicas/microbiologia , Infecções Oculares Fúngicas/prevenção & controle , Feminino , Humanos , Incidência , Ceratite/epidemiologia , Ceratite/microbiologia , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/epidemiologia , Análise de Regressão , Estudos Retrospectivos , Doadores de Tecidos , Adulto Jovem
5.
Hum Mol Genet ; 23(10): 2665-77, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24381307

RESUMO

Exome sequencing indicated that the gene encoding the calpain-5 protease, CAPN5, is the likely cause of retinal degeneration and autoimmune uveitis in human patients with autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV, OMIM #193235). To explore the mechanism of ADNIV, a human CAPN5 disease allele was expressed in mouse retinas with a lentiviral vector created to express either the wild-type human (h) CAPN5 or the ADNIV mutant hCAPN5-R243L allele under a rhodopsin promoter with tandem green fluorescent protein (GFP) expression. Vectors were injected into the subretinal space of perinatal mice. Mouse phenotypes were analyzed using electroretinography, histology and inflammatory gene expression profiling. Mouse calpain-5 showed high homology to its human ortholog with >98% sequence identity that includes the ADNIV mutant residue. Calpain-5 protein was expressed in the inner and outer segments of the photoreceptors and in the outer plexiform layer. Expression of the hCAPN5-R243L allele caused loss of the electroretinogram b-wave, photoreceptor degeneration and induction of immune cell infiltration and inflammatory genes in the retina, recapitulating major features of the ADNIV phenotype. Intraocular neovascularization and fibrosis were not observed during the study period. Our study shows that expression of the hCAPN5-R243L disease allele elicits an ADNIV-like disease in mice. It further suggests that ADNIV is due to CAPN5 gain-of-function rather than haploinsufficiency, and retinal expression may be sufficient to generate an autoimmune response. Genetic models of ADNIV in the mouse can be used to explore protease mechanisms in retinal degeneration and inflammation as well as preclinical therapeutic testing.


Assuntos
Calpaína/genética , Retina/metabolismo , Vitreorretinopatia Proliferativa/genética , Adulto , Sequência de Aminoácidos , Animais , Calpaína/metabolismo , Modelos Animais de Doenças , Exoma , Humanos , Mediadores da Inflamação/metabolismo , Lentivirus/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Células Fotorreceptoras de Vertebrados/patologia , Retina/patologia , Transdução Genética , Vitreorretinopatia Proliferativa/imunologia , Vitreorretinopatia Proliferativa/patologia
6.
PLoS Genet ; 8(10): e1003001, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23055945

RESUMO

Autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV) is an autoimmune condition of the eye that sequentially mimics uveitis, retinitis pigmentosa, and proliferative diabetic retinopathy as it progresses to complete blindness. We identified two different missense mutations in the CAPN5 gene in three ADNIV kindreds. CAPN5 encodes calpain-5, a calcium-activated cysteine protease that is expressed in retinal photoreceptor cells. Both mutations cause mislocalization from the cell membrane to the cytosol, and structural modeling reveals that both mutations lie within a calcium-sensitive domain near the active site. CAPN5 is only the second member of the large calpain gene family to cause a human Mendelian disorder, and this is the first report of a specific molecular cause for autoimmune eye disease. Further investigation of these mutations is likely to provide insight into the pathophysiologic mechanisms of common diseases ranging from autoimmune disorders to diabetic retinopathy.


Assuntos
Calpaína/genética , Doenças da Coroide/genética , Oftalmopatias Hereditárias/genética , Mutação , Degeneração Retiniana/genética , Sequência de Aminoácidos , Sequência de Bases , Calpaína/química , Linhagem Celular , Células Cultivadas , Doenças da Coroide/patologia , Exoma , Éxons , Oftalmopatias Hereditárias/patologia , Feminino , Expressão Gênica , Ligação Genética , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Linhagem , Fenótipo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Conformação Proteica , Transporte Proteico , Degeneração Retiniana/patologia , Alinhamento de Sequência
7.
Prog Retin Eye Res ; 99: 101234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176611

RESUMO

The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs' endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.


Assuntos
Distrofia Endotelial de Fuchs , Ceratocone , Animais , Mecanotransdução Celular , Células Endoteliais , Córnea/fisiologia
8.
Hum Mutat ; 34(8): 1075-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23674478

RESUMO

We performed whole-exome sequencing of a family with autosomal dominant Dandy-Walker malformation and occipital cephaloceles and detected a mutation in the extracellular matrix (ECM) protein-encoding gene NID1. In a second family, protein interaction network analysis identified a mutation in LAMC1, which encodes a NID1-binding partner. Structural modeling of the NID1-LAMC1 complex demonstrated that each mutation disrupts the interaction. These findings implicate the ECM in the pathogenesis of Dandy-Walker spectrum disorders.


Assuntos
Síndrome de Dandy-Walker/genética , Encefalocele/genética , Laminina/genética , Glicoproteínas de Membrana/genética , Mutação , Exoma , Matriz Extracelular/genética , Humanos , Laminina/química , Laminina/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Estrutura Terciária de Proteína , Análise de Sequência de DNA
9.
Mol Vis ; 19: 2274-97, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24265543

RESUMO

PURPOSE: Age-related macular degeneration (AMD) is a major cause of blindness in developed countries. The molecular pathogenesis of early events in AMD is poorly understood. We investigated differential gene expression in samples of human retinal pigment epithelium (RPE) and choroid from early AMD and control maculas with exon-based arrays. METHODS: Gene expression levels in nine human donor eyes with early AMD and nine control human donor eyes were assessed using Affymetrix Human Exon ST 1.0 arrays. Two controls did not pass quality control and were removed. Differentially expressed genes were annotated using the Database for Annotation, Visualization and Integrated Discovery (DAVID), and gene set enrichment analysis (GSEA) was performed on RPE-specific and endothelium-associated gene sets. The complement factor H (CFH) genotype was also assessed, and differential expression was analyzed regarding high AMD risk (YH/HH) and low AMD risk (YY) genotypes. RESULTS: Seventy-five genes were identified as differentially expressed (raw p value <0.01; ≥50% fold change, mean log2 expression level in AMD or control ≥ median of all average gene expression values); however, no genes were significant (adj. p value <0.01) after correction for multiple hypothesis testing. Of 52 genes with decreased expression in AMD (fold change <0.5; raw p value <0.01), 18 genes were identified by DAVID analysis as associated with vision or neurologic processes. The GSEA of the RPE-associated and endothelium-associated genes revealed a significant decrease in genes typically expressed by endothelial cells in the early AMD group compared to controls, consistent with previous histologic and proteomic studies. Analysis of the CFH genotype indicated decreased expression of ADAMTS9 in eyes with high-risk genotypes (fold change = -2.61; raw p value=0.0008). CONCLUSIONS: GSEA results suggest that RPE transcripts are preserved or elevated in early AMD, concomitant with loss of endothelial cell marker expression. These results are consistent with the notion that choroidal endothelial cell dropout or dedifferentiation occurs early in the pathogenesis of AMD.


Assuntos
Corioide/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação da Expressão Gênica , Degeneração Macular/genética , Degeneração Macular/patologia , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Fator H do Complemento/genética , Biologia Computacional , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Controle de Qualidade , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Fatores de Risco
10.
Invest Ophthalmol Vis Sci ; 64(7): 26, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326594

RESUMO

Purpose: There is a pressing need to investigate the impact of type II diabetes mellitus on the posterior cornea in donor tissues given its increasing prevalence and potential impact on endothelial keratoplasty surgical outcomes. Methods: Immortalized human cultured corneal endothelial cells (CECs; HCEC-B4G12) were grown in hyperglycemic media for 2 weeks. Extracellular matrix (ECM) adhesive glycoprotein expression and advanced glycation end products (AGEs) in cultured cells and corneoscleral donor tissues, as well as the elastic modulus for the Descemet membrane (DMs) and CECs of diabetic and nondiabetic donor corneas, were measured. Results: In CEC cultures, increasing hyperglycemia resulted in increased transforming growth factor beta-induced (TGFBI) protein expression and colocalization with AGEs in the ECM. In donor corneas, the thicknesses of the DM and the interfacial matrix (IFM) between the DM and stroma both increased from 8.42 ± 1.35 µm and 0.504 ± 0.13 µm in normal corneas, respectively, to 11.13 ± 2.91 µm (DM) and 0.681 ± 0.24 µm (IFM) in non-advanced diabetes (P = 0.013 and P = 0.075, respectively) and 11.31 ± 1.76 µm (DM) and 0.744 ± 0.18 µm (IFM) in advanced diabetes (AD; P = 0.0002 and P = 0.003, respectively). Immunofluorescence in AD tissues versus controls showed increased AGEs (P < 0.001) and markedly increased labeling intensity for adhesive glycoproteins, including TGFBI, that colocalized with AGEs. The elastic modulus significantly increased between AD and control tissues for the DMs (P < 0.0001) and CECs (P < 0.0001). Conclusions: Diabetes and hyperglycemia alter human CEC ECM structure and composition, likely contributing to previously documented complications of endothelial keratoplasty using diabetic donor tissue, including tearing during graft preparation and reduced graft survival. AGE accumulation in the DM and IFM may be a useful biomarker for determining diabetic impact on posterior corneal tissue.


Assuntos
Ceratoplastia Endotelial com Remoção da Lâmina Limitante Posterior , Diabetes Mellitus Tipo 2 , Hiperglicemia , Humanos , Lâmina Limitante Posterior/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais , Ceratoplastia Endotelial com Remoção da Lâmina Limitante Posterior/métodos , Córnea , Matriz Extracelular , Hiperglicemia/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Doadores de Tecidos , Endotélio Corneano/metabolismo
11.
PLoS One ; 18(1): e0280491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36652491

RESUMO

Diabetes mellitus is a multiorgan systemic disease impacting numerous ocular structures that results in significant ocular morbidity and often results in more frequent corneal and glaucoma surgeries for affected individuals. We hypothesize that the systemic metabolic and proteomic derangement observed in the progression of diabetes influences the composition of the aqueous humor (AH), which ultimately impacts the anterior segment health of the eye. To identify changes associated with diabetes progression, we mapped the metabolite profile and proteome of AH samples from patients with varying severities of type II diabetes (T2DM). Patients were classified as nondiabetic (ND or control), non-insulin-dependent diabetic without advanced features of disease (NAD-ni), insulin-dependent diabetic without advanced features (NAD-i), or diabetic with advanced features (AD). AH samples collected from the anterior chamber during elective ophthalmic surgery were evaluated for metabolite and protein expression changes associated with diabetic severity via gas chromatography/mass spectrometry and ultra-high performance liquid chromatography tandem mass spectrometry, respectively. Metabolic and proteomic pathway analyses were conducted utilizing MetaboAnalyst 4.0 and Ingenuity Pathway Analysis. A total of 14 control, 12 NAD-ni, 4 NAD-I, and 14 AD samples were included for analysis. Elevated levels of several branched amino acids (e.g., valine, leucine, isoleucine), and lipid metabolites (e.g., palmitate) were found only with increasing diabetic severity (i.e., the AD group). Similar proteomic trends were noted in amino acid and fatty acid metabolism and the unfolded protein/stress response. These results represent the first report of both metabolomic and proteomic evaluation of aqueous humor. Diabetes results in metabolic and proteomic perturbations detectable in the AH, and unique changes become manifest as T2DM severity worsens. Changes in AH composition may serve as an indicator of disease severity, risk assessment of anterior segment cells and structures, and potential future therapies.


Assuntos
Humor Aquoso , Diabetes Mellitus Tipo 2 , Humanos , Humor Aquoso/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteômica , NAD/metabolismo , Cromatografia Líquida
12.
Invest Ophthalmol Vis Sci ; 64(4): 22, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37074694

RESUMO

Purpose: We sought to define the role of Wwtr1 in murine ocular structure and function and determine the role of mechanotransduction in Fuchs' endothelial corneal dystrophy (FECD), with emphasis on interactions between corneal endothelial cells (CEnCs) and Descemet's membrane (DM). Methods: A Wwtr1 deficient mouse colony was established, and advanced ocular imaging, atomic force microscope (AFM), and histology/immunofluorescence were performed. Corneal endothelial wound healing was assessed using cryoinjury and phototherapeutic keratectomy in Wwtr1 deficient mice. Expression of WWTR1/TAZ was determined in the corneal endothelium from normal and FECD-affected patients; WWTR1 was screened for coding sequence variants in this FECD cohort. Results: Mice deficient in Wwtr1 had reduced CEnC density, abnormal CEnC morphology, softer DM, and thinner corneas versus wildtype controls by 2 months of age. Additionally, CEnCs had altered expression and localization of Na/K-ATPase and ZO-1. Further, Wwtr1 deficient mice had impaired CEnC wound healing. The WWTR1 transcript was highly expressed in healthy human CEnCs comparable to other genes implicated in FECD pathogenesis. Although WWTR1 mRNA expression was comparable between healthy and FECD-affected patients, WWTR1/TAZ protein concentrations were higher and localized to the nucleus surrounding guttae. No genetic associations were found in WWTR1 and FECD in a patient cohort compared to controls. Conclusions: There are common phenotypic abnormalities seen between Wwtr1 deficient and FECD-affected patients, suggesting that Wwtr1 deficient mice could function as a murine model of late-onset FECD. Despite the lack of a genetic association between FECD and WWTR1, aberrant WWTR1/TAZ protein subcellular localization and degradation may play critical roles in the pathogenesis of FECD.


Assuntos
Células Endoteliais , Distrofia Endotelial de Fuchs , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Mecanotransdução Celular , Distrofia Endotelial de Fuchs/patologia , Endotélio Corneano/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
13.
Retina ; 32(10): 2141-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23095728

RESUMO

PURPOSE: To compare vitreous biopsy methods using analysis platforms used in proteomics biomarker discovery. METHODS: Vitreous biopsies from 10 eyes were collected sequentially using a 23-gauge needle and a 23-gauge vitreous cutter instrument. Paired specimens were evaluated by UV absorbance spectroscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and liquid chromatography tandem mass spectrometry (LC-MS/MS). RESULTS: The total protein concentration obtained with a needle and vitrectomy instrument biopsy averaged 1.10 mg/mL (standard error of the mean = 0.35) and 1.13 mg/mL (standard error of the mean = 0.25), respectively. In eight eyes with low or medium viscidity, there was a very high correlation (R = 0.934) between the biopsy methods. When data from 2 eyes with high viscidity vitreous were included, the correlation was reduced (R = 0.704). The molecular weight protein sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles of paired needle and vitreous cutter samples were similar, except for a minority of pairs with single band intensity variance. Using LC-MS/MS, equivalent peptides were identified with similar frequencies (R ≥ 0.90) in paired samples. CONCLUSION: Proteins and peptides collected from vitreous needle biopsies are nearly equivalent to those obtained from a vitreous cutter instrument. This study suggests both techniques may be used for most proteomic and biomarker discovery studies of vitreoretinal diseases, although a minority of proteins and peptides may differ in concentration.


Assuntos
Biomarcadores/análise , Biópsia/métodos , Proteínas do Olho/análise , Corpo Vítreo/química , Adolescente , Idoso , Biópsia/instrumentação , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Oftalmopatias/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica , Espectrofotometria Ultravioleta , Espectrometria de Massas em Tandem , Vitrectomia/instrumentação , Adulto Jovem
14.
BMC Med Genet ; 12: 58, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21521525

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is a common disease of the elderly that leads to loss of the central visual field due to atrophic or neovascular events. Evidence from human eyes and animal models suggests an important role for macrophages and endothelial cell activation in the pathogenesis of AMD. We sought to determine whether common ancestral variants in genes encoding the selectin family of proteins are associated with AMD. METHODS: Expression of E-selectin, L-selectin and P-selectin was examined in choroid and retina by quantitative PCR and immunofluorescence. Samples from patients with AMD (n = 341) and controls (n = 400) were genotyped at a total of 34 SNPs in the SELE, SELL and SELP genes. Allele and genotype frequencies at these SNPs were compared between AMD patients and controls as well as between subtypes of AMD (dry, geographic atrophy, and wet) and controls. RESULTS: High expression of all three selectin genes was observed in the choroid as compared to the retina. Some selectin labeling of retinal microglia, drusen cores and the choroidal vasculature was observed. In the genetic screen of AMD versus controls, no positive associations were observed for SELE or SELL. One SNP in SELP (rs3917751) produced p-values < 0.05 (uncorrected for multiple measures). In the subtype analyses, 6 SNPs (one in SELE, two in SELL, and three in SELP) produced p-values < 0.05. However, when adjusted for multiple measures with a Bonferroni correction, only one SNP in SELP (rs3917751) produced a statistically significant p-value (p = 0.0029). CONCLUSIONS: This genetic screen did not detect any SNPs that were highly associated with AMD affection status overall. However, subtype analysis showed that a single SNP located within an intron of SELP (rs3917751) is statistically associated with dry AMD in our cohort. Future studies with additional cohorts and functional assays will clarify the biological significance of this discovery. Based on our findings, it is unlikely that common ancestral variants in the other selectin genes (SELE and SELL) are risk factors for AMD. Finally, it remains possible that sporadic or rare mutations in SELE, SELL, or SELP have a role in the pathogenesis of AMD.


Assuntos
Variação Genética , Degeneração Macular/genética , Animais , Corioide/metabolismo , Modelos Animais de Doenças , Selectina E/genética , Genótipo , Humanos , Selectina L/genética , Microscopia de Fluorescência/métodos , Selectina-P/genética , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Retina/metabolismo , Risco
15.
Mol Vis ; 17: 576-82, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21364907

RESUMO

PURPOSE: Age-related macular degeneration (AMD) is a common blinding disease in the elderly population. AMD is frequently complicated by choroidal neovascularization, causing irreversible losses in visual acuity. Proteins that induce pathologic angiogenesis in other systems include angiogenin, a small protein involved in angiogenesis in tumor metastases. Our goal was to determine if angiogenin participates in angiogenesis during choroidal neovascular membrane formation in AMD. METHODS: The expression of angiogenin in the human retina and retinal pigment epithelium (RPE)-choroid was determined using reverse-transcription (RT)-PCR and immunoblotting. Localization of angiogenin in human control eyes and in eyes with choroidal neovascularization was determined using immunohistochemistry. Potential angiogenin-mediated effects on endothelial cell migration, as well as angiogenin internalization by Rf/6a cells, were determined. RESULTS: Angiogenin was synthesized by the human choroid and retina and localized to normal and pathologic vasculature. Angiogenin did not change the migratory behavior of Rf/6a chorioretinal endothelial cells; however, these cells did internalize exogenous angiogenin in culture. CONCLUSIONS: Chorioretinal endothelial cells bind and internalize angiogenin, a protein localized to the choroid in normal eyes, as well as in some drusen and in neovascular membranes in AMD eyes. Angiogenin has been shown to participate in angiogenesis in other tissues. Although angiogenin does not increase the migratory behavior of these cells, it may play a role in other aspects of endothelial cell activation in neovascular AMD.


Assuntos
Degeneração Macular/enzimologia , Ribonuclease Pancreático/metabolismo , Idoso de 80 Anos ou mais , Movimento Celular , Núcleo Celular/metabolismo , Células Cultivadas , Corioide/enzimologia , Corioide/patologia , Endocitose , Células Endoteliais/patologia , Regulação da Expressão Gênica , Humanos , Immunoblotting , Degeneração Macular/genética , Degeneração Macular/patologia , Reação em Cadeia da Polimerase , Transporte Proteico , Epitélio Pigmentado da Retina/enzimologia , Epitélio Pigmentado da Retina/patologia , Ribonuclease Pancreático/genética
16.
Invest Ophthalmol Vis Sci ; 62(3): 22, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33724294

RESUMO

Mitochondrial function is essential for the viability of aerobic eukaryotic cells, as mitochondria provide energy through the generation of adenosine triphosphate (ATP), regulate cellular metabolism, provide redox balancing, participate in immune signaling, and can initiate apoptosis. Mitochondria are dynamic organelles that participate in a cyclical and ongoing process of regeneration and autophagy (clearance), termed mitophagy specifically for mitochondrial (macro)autophagy. An imbalance in mitochondrial function toward mitochondrial dysfunction can be catastrophic for cells and has been characterized in several common ophthalmic diseases. In this article, we review mitochondrial homeostasis in detail, focusing on the balance of mitochondrial dynamics including the processes of fission and fusion, and provide a description of the mechanisms involved in mitophagy. Furthermore, this article reviews investigations of ocular diseases with impaired mitophagy, including Fuchs endothelial corneal dystrophy, primary open-angle glaucoma, diabetic retinopathy, and age-related macular degeneration, as well as several primary mitochondrial diseases with ocular phenotypes that display impaired mitophagy, including mitochondrial encephalopathy lactic acidosis stroke, Leber hereditary optic neuropathy, and chronic progressive external ophthalmoplegia. The results of various studies using cell culture, animal, and human tissue models are presented and reflect a growing awareness of mitophagy impairment as an important feature of ophthalmic disease pathology. As this review indicates, it is imperative that mitophagy be investigated as a targetable mechanism in developing therapies for ocular diseases characterized by oxidative stress and mitochondrial dysfunction.


Assuntos
Retinopatia Diabética/fisiopatologia , Distrofia Endotelial de Fuchs/fisiopatologia , Glaucoma de Ângulo Aberto/fisiopatologia , Degeneração Macular/fisiopatologia , Mitocôndrias/fisiologia , Doenças Mitocondriais/fisiopatologia , Mitofagia/fisiologia , Animais , Humanos , Terapia de Alvo Molecular
17.
Cells ; 10(3)2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804633

RESUMO

The extracellular matrix (ECM) plays a crucial role in all parts of the eye, from maintaining clarity and hydration of the cornea and vitreous to regulating angiogenesis, intraocular pressure maintenance, and vascular signaling. This review focuses on the interactions of the ECM for homeostasis of normal physiologic functions of the cornea, vitreous, retina, retinal pigment epithelium, Bruch's membrane, and choroid as well as trabecular meshwork, optic nerve, conjunctiva and tenon's layer as it relates to glaucoma. A variety of pathways and key factors related to ECM in the eye are discussed, including but not limited to those related to transforming growth factor-ß, vascular endothelial growth factor, basic-fibroblastic growth factor, connective tissue growth factor, matrix metalloproteinases (including MMP-2 and MMP-9, and MMP-14), collagen IV, fibronectin, elastin, canonical signaling, integrins, and endothelial morphogenesis consistent of cellular activation-tubulogenesis and cellular differentiation-stabilization. Alterations contributing to disease states such as wound healing, diabetes-related complications, Fuchs endothelial corneal dystrophy, angiogenesis, fibrosis, age-related macular degeneration, retinal detachment, and posteriorly inserted vitreous base are also reviewed.


Assuntos
Corioide/metabolismo , Córnea/metabolismo , Matriz Extracelular/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Lâmina Basilar da Corioide/metabolismo , Humanos , Degeneração Macular/metabolismo , Neovascularização Patológica/metabolismo
18.
Biomaterials ; 275: 120842, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34087583

RESUMO

Defective cellular metabolism, impaired mitochondrial function, and increased cell death are major problems that adversely affect donor tissues during hypothermic preservation prior to transplantation. These problems are thought to arise from accumulated reactive oxygen species (ROS) inside cells. Oxidative stress acting on the cells of organs and tissues preserved in hypothermic conditions before surgery, as is the case for cornea transplantation, is thought to be a major reason behind cell death prior to surgery and decreased graft survival after transplantation. We have recently discovered that ubiquinol - the reduced and active form of coenzyme Q10 and a powerful antioxidant - significantly enhances mitochondrial function and reduces apoptosis in human donor corneal endothelial cells. However, ubiquinol is highly lipophilic, underscoring the need for an aqueous-based formulation of this molecule. Herein, we report a highly dispersible and stable formulation comprising a complex of ubiquinol and gamma cyclodextrin (γ-CD) for use in aqueous-phase ophthalmic products. Docking studies showed that γ-CD has the strongest binding affinity with ubiquinol compared to α- or ß-CD. Complexed ubiquinol showed significantly higher stability compared to free ubiquinol in different aqueous ophthalmic products including Optisol-GS® corneal storage medium, balanced salt solution for intraocular irrigation, and topical Refresh® artificial tear eye drops. Greater ROS scavenging activity was noted in a cell model with high basal metabolism and ROS generation (A549) and in HCEC-B4G12 human corneal endothelial cells after treatment with ubiquinol/γ-CD compared to free ubiquinol. Furthermore, complexed ubiquinol was more effective at lowering ROS, and at far lower concentrations, compared to free ubiquinol. Complexed ubiquinol inhibited lipid peroxidation and protected HCEC-B4G12 cells against erastin-induced ferroptosis. No evidence of cellular toxicity was detected in HCEC-B4G12 cells after treatment with complexed ubiquinol. Using a vertical diffusion system, a topically applied inclusion complex of γ-CD and a lipophilic dye (coumarin-6) demonstrated transcorneal penetrance in porcine corneas and the capacity for the γ-CD vehicle to deliver drug to the corneal endothelium. Using the same model, topically applied ubiquinol/γ-CD complex penetrated the entire thickness of human donor corneas with markedly greater ubiquinol retention in the endothelium compared to free ubiquinol. Lastly, the penetrance of ubiquinol/γ-CD complex was assayed using human donor corneas preserved for 7 days in Optisol-GS® per standard industry practices, and demonstrated higher amounts of ubiquinol retained in the corneal endothelium compared to free ubiquinol. In summary, ubiquinol complexed with γ-CD is a highly stable composition that can be incorporated into a variety of aqueous-phase products for ophthalmic use including donor corneal storage media and topical eye drops to scavenge ROS and protect corneal endothelial cells against oxidative damage.


Assuntos
Transplante de Córnea , Células Endoteliais , Animais , Córnea , Meios de Cultura Livres de Soro , Dextranos , Endotélio Corneano , Gentamicinas , Humanos , Preservação de Órgãos , Suínos , Ubiquinona/análogos & derivados
19.
Cornea ; 40(3): 292-298, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32732698

RESUMO

PURPOSE: To assess how trypan blue staining affects Descemet membrane endothelial keratoplasty (DMEK) graft visibility and corneal endothelial cell (CEC) mitochondrial respiration. METHODS: DMEK grafts (n = 20) were stained with trypan blue 0.06% for 1, 3, 5, or 10 minutes. Each graft was injected into an artificial anterior chamber. Surgery was simulated with tapping and sweeping motions on the corneal surface and injections of balanced salt solution (BSS). Graft visibility was assessed at 5, 10, 20, and 30 minutes. Effects of trypan blue on mitochondrial respiration were assessed using primary CECs cultured from donor corneas (n = 43). Treatment wells exposed to trypan blue 0.06% (1, 5, or 30 minutes) and donor-matched control wells to methylene blue 1% (1 minute) or BSS (1, 5, or 30 minutes) were assayed for key respiration parameters. RESULTS: After 5 minutes of surgical manipulation, grafts stained for 5 minutes were significantly more visible than grafts stained for 1 or 3 minutes; there was no added benefit of staining for 10 minutes. After 10 minutes of surgical manipulation, grafts stained for 3 minutes were more visible than grafts stained for 1 minute, without additional benefits of staining ≥5 minutes. No visibility differences were observed after ≥20 minutes of surgical manipulation. CEC mitochondrial respiration did not change significantly following trypan blue exposure for all intervals tested compared to BSS. CONCLUSIONS: Staining DMEK grafts with trypan blue for 3 to 5 minutes optimizes visibility during surgical manipulation without mitochondrial impairment. Corneal surgeons learning DMEK will benefit from optimizing this critical step.


Assuntos
Corantes/farmacologia , Ceratoplastia Endotelial com Remoção da Lâmina Limitante Posterior , Endotélio Corneano/anatomia & histologia , Endotélio Corneano/efeitos dos fármacos , Mitocôndrias/fisiologia , Azul Tripano/farmacologia , Perda de Células Endoteliais da Córnea/cirurgia , Endotélio Corneano/metabolismo , Humanos , Pessoa de Meia-Idade , Coloração e Rotulagem/métodos , Fatores de Tempo , Doadores de Tecidos , Coleta de Tecidos e Órgãos
20.
Surv Ophthalmol ; 65(4): 438-450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31926185

RESUMO

The corneal endothelium plays a critical role in maintaining corneal clarity. There is an expected decline in cell density with age and disease, and maintaining the health of this cell layer is important as corneal endothelial cells generally are amitotic in vivo. Diabetes mellitus is a highly prevalent disease that damages the corneal endothelium. Diabetes causes structural and functional impairments in the corneal endothelium that decrease cellular reserve in response to stress. These effects have implications to consider for diabetic patients undergoing anterior segment surgery, and for corneal surgeons who use diabetic donor tissue and treat diabetic patients. In this review, we discuss the specifics of how diabetes mellitus impacts the corneal endothelium including alterations in cell morphology, cell density, ultrastructure, pump and barrier function, cataract surgery outcomes, and corneal transplant outcomes with attention to the use of diabetic donor tissue and diabetic transplant recipients.


Assuntos
Edema da Córnea/diagnóstico , Diabetes Mellitus/diagnóstico , Endotélio Corneano/patologia , Contagem de Células , Edema da Córnea/etiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa