Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 104963, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356720

RESUMO

Vimentin intermediate filaments form part of the cytoskeleton of mesenchymal cells, but under pathological conditions often associated with inflammation, vimentin filaments depolymerize as the result of phosphorylation or citrullination, and vimentin oligomers are secreted or released into the extracellular environment. In the extracellular space, vimentin can bind surfaces of cells and the extracellular matrix, and the interaction between extracellular vimentin and cells can trigger changes in cellular functions, such as activation of fibroblasts to a fibrotic phenotype. The mechanism by which extracellular vimentin binds external cell membranes and whether vimentin alone can act as an adhesive anchor for cells is largely uncharacterized. Here, we show that various cell types (normal and vimentin null fibroblasts, mesenchymal stem cells, and A549 lung carcinoma cells) attach to and spread on polyacrylamide hydrogel substrates covalently linked to vimentin. Using traction force microscopy and spheroid expansion assays, we characterize how different cell types respond to extracellular vimentin. Cell attachment to and spreading on vimentin-coated surfaces is inhibited by hyaluronic acid degrading enzymes, hyaluronic acid synthase inhibitors, soluble heparin or N-acetyl glucosamine, all of which are treatments that have little or no effect on the same cell types binding to collagen-coated hydrogels. These studies highlight the effectiveness of substrate-bound vimentin as a ligand for cells and suggest that carbohydrate structures, including the glycocalyx and glycosylated cell surface proteins that contain N-acetyl glucosamine, form a novel class of adhesion receptors for extracellular vimentin that can either directly support cell adhesion to a substrate or fine-tune the glycocalyx adhesive properties.


Assuntos
Vimentina , Acetilglucosamina/química , Adesão Celular , Movimento Celular , Ácido Hialurônico/química , Filamentos Intermediários/metabolismo , Vimentina/metabolismo , Humanos , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000144

RESUMO

A growing body of experimental data indicates that ceragenins (CSAs), which mimic the physicochemical properties of the host's cationic antimicrobial peptide, hold promise for the development of a new group of broad-spectrum antimicrobials. Here, using a set of in vivo experiments, we assessed the potential of ceragenins in the eradication of an important etiological agent of nosocomial infections, Acinetobacter baumannii. Assessment of the bactericidal effect of ceragenins CSA-13, CSA-44, and CSA-131 on clinical isolates of A. baumannii (n = 65) and their effectiveness against bacterial cells embedded in the biofilm matrix after biofilm growth on abiotic surfaces showed a strong bactericidal effect of the tested molecules regardless of bacterial growth pattern. AFM assessment of bacterial cell topography, bacterial cell stiffness, and adhesion showed significant membrane breakdown and rheological changes, indicating the ability of ceragenins to target surface structures of A. baumannii cells. In the cell culture of A549 lung epithelial cells, ceragenin CSA-13 had the ability to inhibit bacterial adhesion to host cells, suggesting that it interferes with the mechanism of bacterial cell invasion. These findings highlight the potential of ceragenins as therapeutic agents in the development of antimicrobial strategies against bacterial infections caused by A. baumannii.


Assuntos
Acinetobacter baumannii , Aderência Bacteriana , Biofilmes , Esteroides , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/crescimento & desenvolvimento , Humanos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Esteroides/farmacologia , Esteroides/química , Aderência Bacteriana/efeitos dos fármacos , Células A549 , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia
3.
Nano Lett ; 22(12): 4725-4732, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35678828

RESUMO

In this work, we investigate whether stiffening in compression is a feature of single cells and whether the intracellular polymer networks that comprise the cytoskeleton (all of which stiffen with increasing shear strain) stiffen or soften when subjected to compressive strains. We find that individual cells, such as fibroblasts, stiffen at physiologically relevant compressive strains, but genetic ablation of vimentin diminishes this effect. Further, we show that unlike networks of purified F-actin or microtubules, which soften in compression, vimentin intermediate filament networks stiffen in both compression and extension, and we present a theoretical model to explain this response based on the flexibility of vimentin filaments and their surface charge, which resists volume changes of the network under compression. These results provide a new framework by which to understand the mechanical responses of cells and point to a central role of intermediate filaments in response to compression.


Assuntos
Citoesqueleto , Filamentos Intermediários , Citoesqueleto de Actina , Actinas , Vimentina
4.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768426

RESUMO

Antimicrobial resistance is a major and growing global problem and new approaches to combat infections caused by antibiotic resistant bacterial strains are needed. In recent years, increasing attention has been paid to nanomedicine, which has great potential in the development of controlled systems for delivering drugs to specific sites and targeting specific cells, such as pathogenic microbes. There is continued interest in metallic nanoparticles and nanosystems based on metallic nanoparticles containing antimicrobial agents attached to their surface (core shell nanosystems), which offer unique properties, such as the ability to overcome microbial resistance, enhancing antimicrobial activity against both planktonic and biofilm embedded microorganisms, reducing cell toxicity and the possibility of reducing the dosage of antimicrobials. The current review presents the synergistic interactions within metallic nanoparticles by functionalizing their surface with appropriate agents, defining the core structure of metallic nanoparticles and their use in combination therapy to fight infections. Various approaches to modulate the biocompatibility of metallic nanoparticles to control their toxicity in future medical applications are also discussed, as well as their ability to induce resistance and their effects on the host microbiome.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Anti-Infecciosos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Bactérias
5.
Microbiol Spectr ; : e0408222, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36802172

RESUMO

In addition to its role as an actin-depolymerizing factor in the blood, plasma gelsolin (pGSN) binds bacterial molecules and stimulates the phagocytosis of bacteria by macrophages. Here, using an in vitro system, we assessed whether pGSN could also stimulate phagocytosis of the fungal pathogen Candida auris by human neutrophils. The extraordinary ability of C. auris to evade immune responses makes it particularly challenging to eradicate in immunocompromised patients. We demonstrate that pGSN significantly enhances C. auris uptake and intracellular killing. Stimulation of phagocytosis was accompanied by decreased neutrophil extracellular trap (NET) formation and reduced secretion of proinflammatory cytokines. Gene expression studies revealed pGSN-dependent upregulation of scavenger receptor class B (SR-B). Inhibition of SR-B using sulfosuccinimidyl oleate (SSO) and block lipid transport-1 (BLT-1) decreased the ability of pGSN to enhance phagocytosis, indicating that pGSN potentiates the immune response through an SR-B-dependent pathway. These results suggest that the response of the host's immune system during C. auris infection may be enhanced by the administration of recombinant pGSN. IMPORTANCE The incidence of life-threatening multidrug-resistant Candida auris infections is rapidly growing, causing substantial economic costs due to outbreaks in hospital wards. Primary and secondary immunodeficiencies in susceptible individuals, such as those with leukemia, solid organ transplants, diabetes, and ongoing chemotherapy, often correlate with decreased plasma gelsolin concentration (hypogelsolinemia) and impairment of innate immune responses due to severe leukopenia. Immunocompromised patients are predisposed to superficial and invasive fungal infections. Morbidity caused by C. auris among immunocompromised patients can be as great as 60%. In the era of ever-growing fungal resistance in an aging society, it is critical to seek novel immunotherapies that may help combat these infections. The results reported here suggest the possibility of using pGSN as an immunomodulator of the immune response by neutrophils during C. auris infection.

6.
Pathogens ; 12(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003809

RESUMO

The growing number of infections caused by multidrug-resistant bacterial strains, limited treatment options, multi-species infections, high toxicity of the antibiotics used, and an increase in treatment costs are major challenges for modern medicine. To remedy this, scientists are looking for new antibiotics and treatment methods that will effectively eradicate bacteria while continually developing different resistance mechanisms. Ceragenins are a new group of antimicrobial agents synthesized based on molecular patterns that define the mechanism of antibacterial action of natural antibacterial peptides and steroid-polyamine conjugates such as squalamine. Since ceragenins have a broad spectrum of antimicrobial activity, with little recorded ability of bacteria to develop a resistance mechanism that can bridge their mechanism of action, there are high hopes that this group of molecules can give rise to a new family of drugs effective against bacteria resistant to currently used antibiotics. Experimental data suggests that core-shell nanosystems, in which ceragenins are presented to bacterial cells on metallic nanoparticles, may increase their antimicrobial potential and reduce their toxicity. However, studies should be conducted, among others, to assess potential long-term cytotoxicity and in vivo studies to confirm their activity and stability in animal models. Here, we summarized the current knowledge on ceragenins and ceragenin-containing nanoantibiotics as potential new tools against emerging Gram-negative rods associated with nosocomial infections.

7.
Front Microbiol ; 14: 1290952, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045035

RESUMO

The purpose of the work was to investigate the impact of sodium chloride (NaCl) on the antimicrobial efficacy of ceragenins (CSAs) and antimicrobial peptides (AMPs) against bacterial and fungal pathogens associated with cystic fibrosis (CF) lung infections. CF-associated bacterial (Pseudomonas aeruginosa, Ochrobactrum spp., and Staphylococcus aureus), and fungal pathogens (Candida albicans, and Candida tropicalis) were used as target organisms for ceragenins (CSA-13 and CSA-131) and AMPs (LL-37 and omiganan). Susceptibility to the tested compounds was assessed using minimal inhibitory concentrations (MICs) and bactericidal concentrations (MBCs), as well as by colony counting assays in CF sputum samples supplemented with various concentrations of NaCl. Our results demonstrated that ceragenins exhibit potent antimicrobial activity in CF sputum regardless of the NaCl concentration when compared to LL-37 and omiganan. Given the broad-spectrum antimicrobial activity of ceragenins in the microenvironments mimicking the airways of CF patients, ceragenins might be promising agents in managing CF disease.

8.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166513, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932892

RESUMO

BACKGROUND: The mechanical state of the extracellular environment of the brain cells considerably affects their phenotype during the development of central nervous system (CNS) pathologies, and when the cells respond to drugs. The reports on the evaluation of the viscoelastic properties of different brain tumors have shown that both tissue stiffness and viscosity can be altered during cancer development. Although a compelling number of reports established the role of substrate stiffness on the proliferation, motility, and drug sensitivity of brain cancer cells, there is a lack of parallel data in terms of alterations in substrate viscosity. METHODS: Based on viscoelasticity measurements of rat brain samples using strain rheometry, polyacrylamide (PAA) hydrogels mimicking elastic and viscous parameters of the tissues were prepared. Optical microscopy and flow cytometry were employed to assess the differences in glioblastoma cells morphology, proliferation, and cytotoxicity of anticancer drug temozolomide (TMZ) due to increased substrate viscosity. RESULTS: Our results indicate that changes in substrate viscosity affect the proliferation of untreated glioma cells to a lesser extent, but have a significant impact on the apoptosis-associated depolarization of mitochondria and level of DNA fragmentation. This suggests that viscosity sensing and stiffness sensing machinery can activate different signaling pathways in glioma cells. CONCLUSION: Collected data indicate that viscosity should be considered an important parameter in in vitro polymer-based cell culture systems used for drug screening.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Glioma , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Proliferação de Células , Glioblastoma/metabolismo , Glioma/patologia , Humanos , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Polímeros , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Viscosidade
9.
Pathogens ; 11(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35745475

RESUMO

BACKGROUND: Stenotrophomonas maltophilia (S. maltophilia) is an emerging opportunistic Gram-negative rod causing nosocomial infections predominantly in immunocompromised patients. Due to its broad intrinsic resistance to antibiotics, including carbapenems and the ability to form a biofilm, it is difficult to eradicate. METHODS: In this study, the benefit of combined administration (potential synergism) and anti-biofilm activity of ceragenins: CSA-13, CSA-44, and CSA-131 (synthetic mimics of natural antimicrobial peptides) with ceftazidime, levofloxacin, co-trimoxazole and colistin against clinical strains of S. maltophilia were determined using MIC/MBC (minimum inhibitory concentration/minimum bactericidal concentration), killing assays and CV staining. RESULTS: Obtained data indicate that the ceragenins exhibit strong activity against the tested strains of S. maltophilia grown in planktonic culture and as stationary biofilms. Moreover, with some strains, the synergy of ceragenins with conventional antibiotics was observed Conclusion: Our data suggest that ceragenins are promising agents for future development of new methods for treatment of infections caused by S. maltophilia, along with its potential use in combination with conventional antibiotics.

10.
ACS Biomater Sci Eng ; 8(11): 4921-4929, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36301743

RESUMO

Deoxyribonucleic acid (DNA) evolved as a tool for storing and transmitting genetic information within cells, but outside the cell, DNA can also serve as "construction material" present in microbial biofilms or various body fluids, such as cystic fibrosis, sputum, and pus. In the present work, we investigate the mechanics of biofilms formed from Pseudomonas aeruginosa Xen 5, Staphylococcus aureus Xen 30, and Candida albicans 1408 using oscillatory shear rheometry at different levels of compression and recreate these mechanics in systems of entangled DNA and cells. The results show that the compression-stiffening and shear-softening effects observed in biofilms can be reproduced in DNA networks with the addition of an appropriate number of microbial cells. Additionally, we observe that these effects are cell-type dependent. We also identify other mechanisms that may significantly impact the viscoelastic behavior of biofilms, such as the compression-stiffening effect of DNA cross-linking by bivalent cations (Mg2+, Ca2+, and Cu2+) and the stiffness-increasing interactions of P. aeruginosa Xen 5 biofilm with Pf1 bacteriophage produced by P. aeruginosa. This work extends the knowledge of biofilm mechanobiology and demonstrates the possibility of modifying biopolymers toward obtaining the desired biophysical properties.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Staphylococcus aureus/metabolismo , DNA/metabolismo , DNA/farmacologia
11.
Pathogens ; 11(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631012

RESUMO

Recurrent oral infections, as manifested by endodontic and periodontal disease, are often caused by Enterococcus faecalis (E. faecalis) and Candida albicans (C. albicans). Here, we assessed the anti-biofilm activity of ceragenin CSA-44 against these microbes growing as a biofilm in the presence of saliva on the surface of human teeth and dental composite (composite filling) subjected to mechanical stresses. Methods: Biofilm mass analysis was performed using crystal violet (CV) staining. The morphology, viscoelastic properties of the biofilm after CSA-44 treatment, and changes in the surface of the composite in response to biofilm presence were determined by AFM microscopy. Results: CSA-44 prevented biofilm formation and reduced the mass of biofilm formed by tested microorganisms on teeth and dental composite. Conclusion: The ability of CSA-44 to prevent the formation and to reduce the presence of established biofilm on tooth and composite filling suggests that it can serve as an agent in the development of new methods of combating oral pathogens and reduce the severity of oral infections.

12.
Pharmaceutics ; 13(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809901

RESUMO

BACKGROUND: The ever-growing number of infections caused by multidrug-resistant (MDR) bacterial strains requires an increased effort to develop new antibiotics. Herein, we demonstrate that a new class of gold nanoparticles (Au NPs), defined by shape and conjugated with ceragenin CSA-131 (cationic steroid antimicrobial), display strong bactericidal activity against intractable superbugs. METHODS: For the purpose of research, we developed nanosystems with rod- (AuR NPs@CSA-131), peanut-(AuP NPs@CSA-131) and star-shaped (AuS NPs@CSA-131) metal cores. Those nanosystems were evaluated against bacterial strains representing various groups of MDR (multidrug-resistant) Gram-positive (MRSA, MRSE, and MLSb) and Gram-negative (ESBL, AmpC, and CR) pathogens. Assessment of MICs (minimum inhibitory concentrations)/MBCs (minimum bactericidal concentrations) and killing assays were performed as a measure of their antibacterial activity. In addition to a comprehensive analysis of bacterial responses involving the generation of ROS (reactive oxygen species), plasma membrane permeabilization and depolarization, as well as the release of protein content, were performed to investigate the molecular mechanisms of action of the nanosystems. Finally, their hemocompatibility was assessed by a hemolysis assay. RESULTS: All of the tested nanosystems exerted potent bactericidal activity in a manner resulting in the generation of ROS, followed by damage of the bacterial membranes and the leakage of intracellular content. Notably, the killing action occurred with all of the bacterial strains evaluated, including those known to be drug resistant, and at concentrations that did not impact the growth of host cells. CONCLUSIONS: Conjugation of CSA-131 with Au NPs by covalent bond between the COOH group from MHDA and NH3 from CSA-131 potentiates the antimicrobial activity of this ceragenin if compared to its action alone. Results validate the development of AuR NPs@CSA-131, AuP NPs@CSA-131, and AuS NPs@CSA-131 as potential novel nanoantibiotics that might effectively eradicate MDR bacteria.

13.
Sci Rep ; 11(1): 12546, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131207

RESUMO

Medical device-associated infections are a serious medical threat, particularly for patients with impaired mobility and/or advanced age. Despite a variety of antimicrobial coatings for medical devices being explored to date, only a limited number have been introduced for clinical use. Research into new bactericidal agents with the ability to eradicate pathogens, limit biofilm formation, and exhibit satisfactory biocompatibility, is therefore necessary and urgent. In this study, a series of varied-morphology gold nanoparticles in shapes of rods, peanuts, stars and spherical-like, porous ones with potent antibacterial activity were synthesized and thoroughly tested against spectrum of Candida albicans, Pseudomonas aeruginosa, Staphylococcus aureus clinical strains, as well as spectrum of uropathogenic Escherichia coli isolates. The optimization of gold nanoparticles synthesis allowed to develop nanomaterials, which are proved to be significantly more potent against tested microbes compared with the gold nanoformulations reported to date. Notably, their antimicrobial spectrum includes strains with different drug resistance mechanisms. Facile and cost-efficient synthesis of gold nanoparticles, remarkable bactericidal efficiency at nanogram doses, and low toxicity, underline their potential for development as a new coatings, as indicated by the example of urological catheters. The presented research fills a gap in microbial studies of non-spherical gold nanoparticles for the development of antimicrobial coatings targeting multidrug-resistant pathogens responsible for device-associated nosocomial infections.


Assuntos
Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Equipamentos e Provisões/microbiologia , Nanopartículas Metálicas/química , Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Equipamentos e Provisões/efeitos adversos , Ouro/química , Humanos , Nanopartículas Metálicas/microbiologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
14.
Pharmaceutics ; 13(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34834355

RESUMO

BACKGROUND: Infections caused by Candida spp. have become one of the major causes of morbidity and mortality in immunocompromised patients. Therefore, new effective fungicides are urgently needed, especially due to an escalating resistance crisis. METHODS: A set of nanosystems with rod- (AuR), peanut- (AuP), and star-shaped (AuS) metal cores were synthesized. These gold nanoparticles were conjugated with ceragenins CSA-13, CSA-44, and CSA-131, and their activity was evaluated against Candida strains (n = 21) through the assessment of MICs (minimum inhibitory concentrations)/MFCs (minimum fungicidal concentrations). Moreover, in order to determine the potential for resistance development, serial passages of Candida cells with tested nanosystems were performed. The principal mechanism of action of Au NPs was evaluated via ROS (reactive oxygen species) generation assessment, plasma membrane permeabilization, and release of the protein content. Finally, to evaluate the potential toxicity of Au NPs, the measurement of hemoglobin release from red blood cells (RBCs) was carried out. RESULTS: All of the tested nanosystems exerted a potent candidacidal activity, regardless of the species or susceptibility to other antifungal agents. Significantly, no resistance development after 25 passages of Candida cells with AuR@CSA-13, AuR@CSA-44, and AuR@CSA-131 nanosystems was observed. Moreover, the fungicidal mechanism of action of the investigated nanosystems involved the generation of ROS, damage of the fungal cell membrane, and leakage of intracellular contents. Notably, no significant RBCs hemolysis at candidacidal doses of tested nanosystems was detected. CONCLUSIONS: The results provide rationale for the development of gold nanoparticles of rod-, peanut-, and star-shaped conjugated with CSA-13, CSA-44, and CSA-131 as effective candidacidal agents.

15.
Infect Drug Resist ; 14: 5681-5698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992394

RESUMO

BACKGROUND: The increasing number of infections caused by antibiotic resistant strains of Pseudomonas aeruginosa posed a very serious challenge for clinical practice. This standing is driving scientists to develop new antibiotics against these microorganisms. METHODS: In this study, we measured the MIC/MBC values and estimated the ability of tested molecules to prevent bacterial biofilm formation to explore the effectiveness of ß-lactam antibiotics ceftolozane/tazobactam, ceftazidime/avibactam, meropenem/vaborbactam, and ceragenins CSA-13, CSA-44, and CSA-131 against 150 clinical isolates of Pseudomonas aeruginosa that were divided into five groups, based on their antibiotic resistance profiles to beta-lactams. Selected strains of microorganisms from each group were also subjected to prolonged incubations (20 passages) with ceragenins to probe the development of resistance towards those molecules. Cytotoxicity of tested ceragenins was evaluated using human red blood cell (RBCs) hemolysis and microscopy observations of human lung epithelial A549 cells after ceragenin treatment. Poloxamer 407 (pluronic F-127) at concentrations ranging from 0.5% to 5% was tested as a potential drug delivery substrate to reduce ceragenin toxicity. RESULTS: Collected data proved that ceragenins at low concentrations are highly active against clinical strains of Pseudomonas aeruginosa regardless of their resistance mechanisms to conventional antibiotics. Ceragenins also show low potential for resistance development, high antibiofilm activity, and controlled toxicity when used together with poloxamer 407. CONCLUSION: This data strongly supports the need for further study directed to develop this group of molecules as new antibiotics to fighting infections caused by antibiotic resistant strains of Pseudomonas aeruginosa.

16.
Infect Drug Resist ; 13: 3277-3294, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061475

RESUMO

BACKGROUND AND PURPOSE: Treatment of infections caused by NDM-1 carbapenemase-producing Enterobacteriaceae (CPE) represents one of the major challenges of modern medicine. In order to address this issue, we tested ceragenins (CSAs - cationic steroid antimicrobials) as promising agents to eradicate various NDM-1-producing Gram-negative enteric rods. MATERIALS AND METHODS: Susceptibility to CSA-13, CSA-44, and CSA-131 of four reference NDM-1 carbapenemase-producing strains, ie, Escherichia coli BAA-2471, Enterobacter cloacae BAA-2468, Klebsiella pneumoniae subsp. pneumoniae BAA-2472, and K. pneumoniae BAA-2473 was assessed by MIC/MBC testing of planktonic cells as well as biofilm formation/disruption assays. To define the mechanism of CSAs bactericidal activity, their ability to induce generation of reactive oxygen species (ROS), permeabilization of the inner and outer membranes, and their mechanical and adhesive properties upon CSA addition were examined. Additionally, hemolytic assays were performed to assess CSAs hemocompatibility. RESULTS: All tested CSAs exert substantial bactericidal activity against NDM-1-producing bacteria. Moreover, CSAs significantly prevent biofilm formation as well as reduce the mass of developed biofilms. The mechanism of CSA action comprises both increased permeability of the outer and inner membrane, which is associated with an extensive ROS generation. Additionally, atomic force microscopy (AFM) analysis has shown morphological alterations in bacterial cells and the reduction of stiffness and adhesion properties. Importantly, CSAs are characterized by low hemolytic activity at concentrations that are bactericidal. CONCLUSION: Development of ceragenins should be viewed as one of the valid strategies to provide new treatment options against infections associated with CPE. The studies presented herein demonstrate that NDM-1-positive bacteria are more susceptible to ceragenins than to conventional antibiotics. In effect, CSA-13, CSA-44, and CSA-131 may be favorable for prevention and decrease of global burden of CPE.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa