Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Environ Sci Technol ; 57(14): 5532-5543, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36976662

RESUMO

Residential heating with solid fuels is one of the major drivers for poor air quality in Central and Eastern Europe, and coal is still one of the major fuels in countries, such as Poland, the Czech Republic, and Hungary. In this work, emissions from a single-room heater fueled with brown coal briquettes (BCBs) and spruce logs (SLs) were analyzed for signatures of inorganic as well as semivolatile aromatic and low-volatile organic constituents. High variations in organic carbon (OC) emissions of BCB emissions, ranging from 5 to 22 mg MJ-1, were associated to variations in carbon monoxide (CO) emissions, ranging from 900 to 1900 mg MJ-1. Residential BCB combustion turned out to be an equally important source of levoglucosan, an established biomass burning marker, as spruce logwood combustion, but showed distinct higher ratios to manosan and galactosan. Signatures of polycyclic aromatic hydrocarbons emitted by BCB combustion exhibited defunctionalization and desubstitution with increasing combustion quality. Lastly, the concept of island and archipelago structural motifs adapted from petroleomics is used to describe the fraction low-volatile organic compounds in particulate emissions, where a transition from archipelago to island motifs in relation with decreasing CO emissions was observed in BCB emissions, while emissions from SL combustion exhibited the island motif.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Material Particulado/análise , Poluentes Atmosféricos/análise , Carvão Mineral/análise , Calefação , Aerossóis
2.
Environ Sci Technol ; 57(37): 13948-13958, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37671477

RESUMO

Humic-like substances (HULIS), known for their substantial impact on the atmosphere, are identified in marine diesel engine emissions obtained from five different fuels at two engine loads simulating real world scenarios as well as the application of wet sulfur scrubbers. The HULIS chemical composition is characterized by electrospray ionization (ESI) ultrahigh resolution mass spectrometry and shown to contain partially oxidized alkylated polycyclic aromatic compounds as well as partially oxidized aliphatic compounds, both including abundant nitrogen- and sulfur-containing species, and clearly different to HULIS emitted from biomass burning. Fuel properties such as sulfur content and aromaticity as well as the fuel combustion efficiency and engine mode are reflected in the observed HULIS composition. When the marine diesel engine is operated below the optimum engine settings, e.g., during maneuvering in harbors, HULIS-C emission factors are increased (262-893 mg kg-1), and a higher number of HULIS with a shift toward lower degree of oxidation and higher aromaticity is detected. Additionally, more aromatic and aliphatic CHOS compounds in HULIS were detected, especially for high-sulfur fuel combustion. The application of wet sulfur scrubbers decreased the HULIS-C emission factors by 4-49% but also led to the formation of new HULIS compounds. Overall, our results suggest the consideration of marine diesel engines as a relevant regional source of HULIS emissions.


Assuntos
Atmosfera , Navios , Biomassa , Substâncias Húmicas , Enxofre
3.
Anal Chem ; 93(8): 3691-3697, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33593055

RESUMO

Atmospheric pressure single photon ionization (APSPLI) mass spectrometry utilizing a fluorine excimer laser (157 nm, 7.9 eV) is presented for the first time. For evaluation and optimization, polycyclic aromatic hydrocarbon (PAH) standard mixtures were used. The presented technique allowed for the selective ionization of semi- to nonpolar compounds in a single photon ionization process using VUV photons. Molecular radical cations were found as a base peak, whereas protonated species were almost absent. Although the ionization chamber is flushed by pure nitrogen, remaining oxygen and water traces caused unwanted oxidized ionization artifacts. Installation of water and oxygen filter cartridges significantly reduced the abundance of artifacts. For evaluating complex mixture analysis, APSPLI was applied to characterize a light crude oil. In addition to aromatic hydrocarbons, APSPLI allowed for the sensitive ionization of sulfur-containing aromatic constituents (PASH). A comparison of APSPLI to atmospheric pressure laser ionization (266 nm, 4.7 eV) revealed the additional compositional space accessible by the single photon process. APLI, conducted with UV radiation, is mainly restricted to PAH analysis. APSPLI overcomes this limitation, and PAH and PASH, which often occur simultaneously in complex mixtures, can be detected. This novel ionization concept is envisioned to have a high analytical potential further explored in the future.

4.
Part Fibre Toxicol ; 17(1): 27, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539833

RESUMO

BACKGROUND: Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. METHODS: We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. RESULTS: We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m- 3, 41 mg MJ- 1) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m- 3, 26 mg MJ- 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. CONCLUSIONS: Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects.


Assuntos
Poluentes Atmosféricos/toxicidade , Dano ao DNA , Exposição por Inalação/efeitos adversos , Picea/química , Pinus/química , Fumaça/efeitos adversos , Madeira , Células A549 , Aerossóis , Poluentes Atmosféricos/análise , Animais , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Calefação , Humanos , Exposição por Inalação/análise , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Células RAW 264.7 , Fumaça/análise , Especificidade da Espécie , Transcriptoma/efeitos dos fármacos
5.
Anal Chem ; 91(15): 10282-10288, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31251028

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are toxic organic trace components in atmospheric aerosols that have impacts on climate and human health. They are bound to airborne particles and transported over long distances. Observations of their distribution, transport pathways, and degradation are crucial for risk assessment and mitigation. Such estimates would benefit from online detection of PAHs along with analysis of the carrying particles to identify the source. Typically, laser desorption/ionization (LDI) in a bipolar mass spectrometer reveals the inorganic constituents and provides limited molecular information. In contrast, two-step ionization approaches produce detailed PAH mass spectra from individual particles but without the source-specific inorganic composition. Here we report a new technique that yields the single-particle PAH composition along with both positive and negative inorganic ions via LDI. Thus, the complete particle characterization and source apportionment from conventional bipolar LDI-analysis becomes possible, combined with a detailed PAH spectrum for the same particle. The key idea of the method is spatiotemporal matching of the ionization laser pulse to the transient component distribution in the particle plume after laser desorption. The technique is robust and field-deployable with only slightly higher costs and complexity compared to two-step approaches. We demonstrate its capability to reveal the PAH-distribution on different particle types in combustion aerosols and ambient air.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Compostos Inorgânicos/análise , Lasers , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental , Humanos
6.
Anal Chem ; 89(20): 10917-10923, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28960066

RESUMO

Direct infusion resonance-enhanced multiphoton ionization (DI-REMPI) was performed on liquid samples, which were introduced to the ion source via a direct liquid interface, to enable the investigation of dissolved aromatic compounds. Desolvation and nebulization of the samples were supported by a heated repeller using flow rates in the upper nL min-1 range. The obtained mass spectra of five pure polycyclic aromatic hydrocarbons as well as complex petroleum samples revealed predominantly molecular ions without evidence of solvent or dopant effects as observed in atmospheric pressure photoionization (APPI) and laser ionization (APLI) with limits of detection in the lower pmol range. Furthermore, it is demonstrated by the analysis of different complex oil samples that DI-REMPI covers a larger m/z range than external volatilization of the sample prior to introduction to the ion source by using thermogravimetry (TG) hyphenated to REMPI time-of-flight mass spectrometry (TOFMS). Analogous to reported setups with direct liquid interface and electron ionization, direct-REMPI may be an option for soft ionization in liquid chromatography.

7.
Anal Chem ; 89(12): 6341-6345, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28570048

RESUMO

Online studies of single airborne particles represent a demanding challenge in aerosol chemistry. New technologies that help to unravel the role of ambient aerosols in earth climate and to assess local and specific health risks from air pollution are highly desired. Of particular relevance are polycyclic aromatic hydrocarbons (PAHs) from combustion processes that are associated with both acute and long-term health effects. Usually, online single particle analyses apply laser desorption/ionization (LDI) in a bipolar mass spectrometer, revealing elemental constituents and limited molecular information by detection of both positive and negative ions. Approaches for the detection of PAHs from single particles have been developed but the elemental information from LDI that allows particle classification and source apportionment is lost in that case. Here we present a novel laser desorption and ionization method delivering both the PAH-profile and the inorganic composition from the same, individual particle. Test measurements demonstrate the technique's capability to reveal the single-particle PAH-distribution in aerosols (mixing state) and its assignment to specific pollution sources in a new and direct way.

8.
Eur J Mass Spectrom (Chichester) ; 23(2): 49-54, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28657414

RESUMO

Proton sponges are polyamines with high proton affinity that enable gentle deprotonation of even mildly acidic compounds. In this study, the concept of proton sponges as signal enhancing dopants for electrospray ionisation is presented for the first time. 1,8-Bis(dimethylamino)naphthalene (DMAN) and 1,8-bis(tetramethylguanidino)naphthalene (TMGN) were chosen as dopants, using methanol and acetonitrile/methanol as solvents. Individual standard compounds, compound mixtures and a diesel fuel as a complex sample matrix were investigated. Both proton sponges enhanced signal intensities in electrospray ionisation negative mode, but TMGN decomposed rapidly in methanolic solution. Significantly higher signals were only achieved using the acetonitrile/methanol mixture. On average a more than 10-fold higher signal intensity was measured with 10-3 mol l-1 DMAN concentration. A stronger signal increase of alcohol functionalities was observed compared to acid functionalities. All compound classes which were detected in the diesel fuel (CH- and CHOx-class) received roughly 100-fold higher signal intensities when using DMAN as a dopant. Furthermore, the number of detected compounds as well as the double bond equivalent of the detected compounds increased. The compound class distribution shifted when adding DMAN and the formerly dominant CHO2-, CHO3-, and CHO4- classes received similar relative intensities as formerly less accessible classes. The findings depict DMAN as a promising additive for electrospray ionisation negative analysis of at least mildly acidic compounds, even within complex sample material.

9.
Eur J Mass Spectrom (Chichester) ; 23(1): 28-39, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28657450

RESUMO

The analysis of petrochemical materials and particulate matter originating from combustion sources remains a challenging task for instrumental analytical techniques. A detailed chemical characterisation is essential for addressing health and environmental effects. Sophisticated instrumentation, such as mass spectrometry coupled with chromatographic separation, is capable of a comprehensive characterisation, but needs advanced data processing methods. In this study, we present an improved data processing routine for the mass chromatogram obtained from gas chromatography hyphenated to atmospheric pressure chemical ionisation and ultra high resolution mass spectrometry. The focus of the investigation was the primary combustion aerosol samples, i.e. particulate matter extracts, as well as the corresponding fossil fuels fed to the engine. We demonstrate that utilisation of the entire transient and chromatographic information results in advantages including minimisation of ionisation artefacts and a reliable peak assignment. A comprehensive comparison of the aerosol and the feed fuel was performed by applying intensity weighted average values, compound class distribution and principle component analysis. Certain differences between the aerosol generated with the two feed fuels, diesel fuel and heavy fuel oil, as well as between the aerosol and the feed were revealed. For the aerosol from heavy fuel oil, oxidised species from the CHN and CHS class precursors of the feed were predominant, whereas the CHOx class is predominant in the combustion aerosol from light fuel oil. Furthermore, the complexity of the aerosol increases significantly compared to the feed and incorporating a higher chemical space. Coupling of atmospheric pressure chemical ionisation to gas chromatography was found to be a useful additional approach for characterisation of a combustion aerosol, especially with an automated utilisation of the information from the ultra-high resolution mass spectrometer and the chromatographic separation.

10.
Anal Chem ; 87(24): 11957-61, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26560682

RESUMO

Atmospheric pressure chemical ionization (APCI) offers the advantage of molecular ion information with low fragmentation. Hyphenating APCI to gas chromatography (GC) and ultrahigh resolution mass spectrometry (FT-ICR MS) enables an improved characterization of complex mixtures. Data amounts acquired by this system are very huge, and existing peak picking algorithms are usually extremely time-consuming, if both gas chromatographic and ultrahigh resolution mass spectrometric data are concerned. Therefore, automatic routines are developed that are capable of handling these data sets and further allow the identification and removal of known ionization artifacts (e.g., water- and oxygen-adducts, demethylation, dehydrogenation, and decarboxylation). Furthermore, the data quality is enhanced by the prediction of an estimated retention index, which is calculated simply from exact mass data combined with a double bond equivalent correction. This retention index is used to identify mismatched elemental compositions. The approach was successfully tested for analysis of semivolatile components in heavy fuel oil and diesel fuel as well as primary combustion particles emitted by a ship diesel research engine. As a result, 10-28% of the detected compounds, mainly low abundant species, classically assigned by using only the mass spectrometric information, were identified as not valid and removed. Although GC separation is limited by the slow acquisition rate of the FT-ICR MS (<1 Hz), a database driven retention time comparison, as commonly used for low resolution GC/MS, can be applied for revealing isomeric information.

11.
Anal Chem ; 87(13): 6493-9, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26024433

RESUMO

In this study, the hyphenation of a thermobalance to an ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometer (UHR FTICR MS) is presented. Atmospheric pressure chemical ionization (APCI) is used for efficient ionization. The evolved gas analysis (EGA), using high-resolution mass spectrometry allows the time-resolved molecular characterization of thermally induced processes in complex materials or mixtures, such as biomass or crude oil. The most crucial part of the setup is the hyphenation between the thermobalance and the APCI source. Evolved gases are forced to enter the atmospheric pressure ionization interface of the MS by applying a slight overpressure at the thermobalance side of the hyphenation. Using the FTICR exact mass data, detailed chemical information is gained by calculation of elemental compositions from the organic species, enabling a time and temperature resolved, highly selective detection of the evolved species. An additional selectivity is gained by the APCI ionization, which is particularly sensitive toward polar compounds. This selectivity on the one hand misses bulk components of petroleum samples such as alkanes and does not deliver a comprehensive view but on the other hand focuses particularly on typical evolved components from biomass samples. As proof of principle, the thermal behavior of different fossil fuels: heavy fuel oil, light fuel oil, and a crude oil, and different lignocellulosic biomass, namely, beech, birch, spruce, ash, oak, and pine as well as commercial available softwood and birch-bark pellets were investigated. The results clearly show the capability to distinguish between certain wood types through their molecular patterns and compound classes. Additionally, typical literature known pyrolysis biomass marker were confirmed by their elemental composition, such as coniferyl aldehyde (C10H10O3), sinapyl aldehyde (C11H12O4), retene (C18H18), and abietic acid (C20H30O2).

12.
Anal Bioanal Chem ; 407(20): 5923-37, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25585886

RESUMO

In this study, positive-mode laser desorption-ionisation ultra-high-resolution mass spectrometry (LDI-FT-ICR-MS) was applied to study combustion aerosol samples obtained from a ship diesel engine as well as the feed fuel, used to operate the engine. Furthermore, particulate matter was sampled from the exhaust tube using an impactor and analysed directly from the impaction foil without sample treatment. From the high percentage of shared sum formula as well as similarities in the chemical spread of aerosol and heavy fuel oil, results indicate that the primary aerosol mainly consists of survived, unburned species from the feed fuel. The effect of pyrosynthesis could be observed and was slightly more pronounced for the CH-class compared to other compound classes, but in summary not dominant. Alkylation pattern as well as the aromaticity distribution, using the double bond equivalent, revealed a shift towards lower alkylation state for the aerosol. The alkylation pattern of the most dominant series revealed a higher correlation between different aerosol samples than between aerosol and feed samples. This was confirmed by cluster analysis. Overall, this study shows that LDI-FT-ICR-MS can be successfully applied for the analysis of combustion aerosol at the molecular level and that sum formula information can be used to identify chemical differences between aerosol and fuel as well as between different size fractions of the particulate matter.

13.
Anal Bioanal Chem ; 407(20): 5939-51, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25600686

RESUMO

Organic combustion aerosols from a marine medium-speed diesel engine, capable to run on distillate (diesel fuel) and residual fuels (heavy fuel oil), were investigated under various operating conditions and engine parameters. The online chemical characterisation of the organic components was conducted using a resonance-enhanced multiphoton ionisation time-of-flight mass spectrometer (REMPI TOF MS) and a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS). Oxygenated species, alkenes and aromatic hydrocarbons were characterised. Especially the aromatic hydrocarbons and their alkylated derivatives were very prominent in the exhaust of both fuels. Emission factors of known health-hazardous compounds (e.g. mono- and poly-aromatic hydrocarbons) were calculated and found in higher amounts for heavy fuel oil (HFO) at typical engine loadings. Lower engine loads lead in general to increasing emissions for both fuels for almost every compound, e.g. naphthalene emissions varied for diesel fuel exhaust between 0.7 mg/kWh (75 % engine load, late start of injection (SOI)) and 11.8 mg/kWh (10 % engine load, late SOI) and for HFO exhaust between 3.3 and 60.5 mg/kWh, respectively. Both used mass spectrometric techniques showed that they are particularly suitable methods for online monitoring of combustion compounds and very helpful for the characterisation of health-relevant substances. Graphical abstract Three-dimensional REMPI data of organic species in diesel fuel and heavy fuel oil exhaust.

14.
Anal Bioanal Chem ; 407(20): 5911-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25711989

RESUMO

In this study, we produced a class of diffusion flame soot particles with varying chemical and physical properties by using the mini-Combustion Aerosol STandard (CAST) and applying varying oxidant gas flow rates under constant propane, quenching, and dilution gas supply. We varied the soot properties by using the following fuel-to-air equivalence ratios (Φ): 1.13, 1.09, 1.04, 1.00, 0.96, and 0.89. Within this Φ range, we observed drastic changes in the physical and chemical properties of the soot. Oxidant-rich flames (Φ < 1) were characterized by larger particle size, lower particle number concentration, higher black carbon (BC) concentration, lower brown carbon BrC.[BC](-1) than fuel-rich flames (Φ > 1). To investigate the polycyclic aromatic hydrocarbons (PAH) formation online, we developed a new method for quantification by using the one (13)C-containing doubly charged PAH ion in a high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS). The time-resolved concentration showed that the larger PAHs prevailed in the fuel-rich flames and diminished in the oxidant-rich flames. By comparison with the offline in situ derivatization-thermal-desorption gas-chromatography time-of-flight mass spectrometry (IDTD-GC-ToF-MS), we found that the concentration by using the HR-ToF-AMS was underestimated, especially for lower mass PAHs (C14-C18) in the fuel-rich flames possibly due to size limitation and degradation of semi-volatile species under high vacuum and desorption temperature in the latter. For oxidant-rich flames, the large PAHs (C20 and C22) were detected in the HR-ToF-AMS while it was not possible in IDTD-GC-ToF-MS due to matrix effect. The PAH formation was discussed based on the combination of our results and with respect to Φ settings.


Assuntos
Poluentes Atmosféricos/análise , Incineração/instrumentação , Hidrocarbonetos Policíclicos Aromáticos/análise , Fuligem/análise , Aerossóis/análise , Desenho de Equipamento , Espectrometria de Massas , Tamanho da Partícula
15.
Anal Bioanal Chem ; 407(20): 5965-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25772565

RESUMO

Ship diesel combustion particles are known to cause broad cytotoxic effects and thereby strongly impact human health. Particles from heavy fuel oil (HFO) operated ships are considered as particularly dangerous. However, little is known about the relevant components of the ship emission particles. In particular, it is interesting to know if the particle cores, consisting of soot and metal oxides, or the adsorbate layers, consisting of semi- and low-volatile organic compounds and salts, are more relevant. We therefore sought to relate the adsorbates and the core composition of HFO combustion particles to the early cellular responses, allowing for the development of measures that counteract their detrimental effects. Hence, the semi-volatile coating of HFO-operated ship diesel engine particles was removed by stepwise thermal stripping using different temperatures. RAW 264.7 macrophages were exposed to native and thermally stripped particles in submersed culture. Proteomic changes were monitored by two different quantitative mass spectrometry approaches, stable isotope labeling by amino acids in cell culture (SILAC) and dimethyl labeling. Our data revealed that cells reacted differently to native or stripped HFO combustion particles. Cells exposed to thermally stripped particles showed a very differential reaction with respect to the composition of the individual chemical load of the particle. The cellular reactions of the HFO particles included reaction to oxidative stress, reorganization of the cytoskeleton and changes in endocytosis. Cells exposed to the 280 °C treated particles showed an induction of RNA-related processes, a number of mitochondria-associated processes as well as DNA damage response, while the exposure to 580 °C treated HFO particles mainly induced the regulation of intracellular transport. In summary, our analysis based on a highly reproducible automated proteomic sample-preparation procedure shows a diverse cellular response, depending on the soot particle composition. In particular, it was shown that both the molecules of the adsorbate layer as well as particle cores induced strong but different effects in the exposed cells.


Assuntos
Óleos Combustíveis/análise , Óleos Combustíveis/toxicidade , Macrófagos/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Linhagem Celular , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Macrófagos/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Proteômica , Navios , Fuligem/análise , Fuligem/toxicidade , Espectrometria de Massas em Tandem , Emissões de Veículos/análise , Emissões de Veículos/toxicidade , Fluxo de Trabalho
16.
Anal Bioanal Chem ; 405(22): 6953-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23812882

RESUMO

Electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photo-ionization (APPI) are the most important techniques for the ionization of liquid samples. However, working under atmospheric pressure conditions, all these techniques involve some chemical rather than purely physical processes, and therefore, side reactions often yield to matrix-dependent ionization efficiencies. Here, a system is presented that combines both soft single-photon ionization (SPI) and hard 70 eV electron impact ionization (EI) of dissolved compounds under vacuum conditions. A quadrupole mass spectrometer was modified to enable direct EI, a technique developed by Cappiello et al. to obtain library-searchable EI mass spectra as well as soft SPI mass spectra of sample solutions. An electron beam-pumped rare gas excimer lamp working at 126 nm was used as well as a focusable vacuum UV light source for single-photon ionization. Both techniques, EI and SPI, were applied successfully for flow injection experiments providing library-matchable EI fragment mass spectra and soft SPI mass spectra, showing dominant signals for the molecular ion. Four model compounds were analyzed: hexadecane, propofol, chlorpropham, and eugenol, with detection limits in the picomolar range. This novel combination of EI and SPI promises great analytical benefits, thanks to the possibility of combining database alignment for EI data and molecular mass information provided by SPI. Possible applications for the presented ionization technology system are a matrix-effect-free detection and a rapid screening of different complex mixtures without time-consuming sample preparation or separation techniques (e.g., for analysis of reaction solutions in combinatorial chemistry) or a switchable hard (EI) and soft (SPI) MS method as detection step for liquid chromatography.


Assuntos
Análise de Injeção de Fluxo/instrumentação , Íons/química , Espectrometria de Massas/instrumentação , Elétrons , Desenho de Equipamento , Fótons , Raios Ultravioleta , Vácuo
17.
Environ Pollut ; 316(Pt 1): 120526, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341831

RESUMO

The emissions of marine diesel engines have gained both global and regional attentions because of their impact on human health and climate change. To reduce ship emissions, the International Maritime Organization capped the fuel sulfur content of marine fuels. Consequently, either low-sulfur fuels or additional exhaust gas cleaning devices for the reduction in sulfur dioxide (SO2) emissions became mandatory. Although a wet scrubber reduces the amount of SO2 significantly, there is still a need to consider the reduction in particle emissions directly. We present data on the particle removal efficiency of a scrubber regarding particle number and mass concentration with different marine fuel types, marine gas oil, and two heavy fuel oils (HFOs). An open-loop sulfur scrubber was installed in the exhaust line of a marine diesel test engine. Fine particulate matter was comprehensively characterized in terms of its physical and chemical properties. The wet scrubber led up to a 40% reduction in particle number, whereas a reduction in particle mass emissions was not generally determined. We observed a shift in the size distribution by the scrubber to larger particle diameters when the engine was operated on conventional HFOs. The reduction in particle number concentrations and shift in particle size were caused by the coagulation of soot particles and formation/growing of sulfur-containing particles. Combining the scrubber with a wet electrostatic precipitator as an additional abatement system showed a reduction in particle number and mass emission factors by >98%. Therefore, the application of a wet scrubber for the after-treatment of marine fuel oil combustion will reduce SO2 emissions, but it does not substantially affect the number and mass concentration of respirable particulate matters. To reduce particle emission, the scrubber should be combined with additional abatement systems.


Assuntos
Poluentes Atmosféricos , Óleos Combustíveis , Aerossóis , Poluentes Atmosféricos/análise , Gasolina/análise , Material Particulado/análise , Enxofre/análise , Emissões de Veículos/análise
18.
Beilstein J Org Chem ; 8: 579-96, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22563356

RESUMO

Xanthomonas campestris is a phytopathogenic bacterium and causes many diseases of agricultural relevance. Volatiles were shown to be important in inter- and intraorganismic attraction and defense reactions. Recently it became apparent that also bacteria emit a plethora of volatiles, which influence other organisms such as invertebrates, plants and fungi. As a first step to study volatile-based bacterial-plant interactions, the emission profile of Xanthomonas c. pv. vesicatoria 85-10 was determined by using GC/MS and PTR-MS techniques. More than 50 compounds were emitted by this species, the majority comprising ketones and methylketones. The structure of the dominant compound, 10-methylundecan-2-one, was assigned on the basis of its analytical data, obtained by GC/MS and verified by comparison of these data with those of a synthetic reference sample. Application of commercially available decan-2-one, undecan-2-one, dodecan-2-one, and the newly synthesized 10-methylundecan-2-one in bi-partite Petri dish bioassays revealed growth promotions in low quantities (0.01 to 10 µmol), whereas decan-2-one at 100 µmol caused growth inhibitions of the fungus Rhizoctonia solani. Volatile emission profiles of the bacteria were different for growth on media (nutrient broth) with or without glucose.

19.
Toxics ; 10(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36548563

RESUMO

Anthropogenic activities and industrialization render continuous human exposure to semi-volatile organic compounds (SVOCs) inevitable. Occupational monitoring and safety implementations consider the inhalation exposure of SVOCs as critically relevant. Due to the inherent properties of SVOCs as gas/particle mixtures, risk assessment strategies should consider particle size-segregated SVOC association and the relevance of released gas phase fractions. We constructed an in vitro air-liquid interface (ALI) exposure system to study the distinct toxic effects of the gas and particle phases of the model SVOC dibutyl phthalate (DBP) in A549 human lung epithelial cells. Cytotoxicity was evaluated and genotoxic effects were measured by the alkaline and enzyme versions of the comet assay. Deposited doses were assessed by model calculations and chemical analysis using liquid chromatography tandem mass spectrometry. The novel ALI exposure system was successfully implemented and revealed the distinct genotoxic effects of the gas and particle phases of DBP. The empirical measurements of cellular deposition and the model calculations of the DBP particle phase were concordant.The model SVOC DBP showed that inferred oxidative DNA damage may be attributed to particle-related effects. While pure gas phase exposure may follow a distinct mechanism of genotoxicity, the contribution of the gas phase to total aerosol was comparably low.

20.
Environ Health Perspect ; 130(2): 27003, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35112925

RESUMO

BACKGROUND: Secondary organic aerosols (SOAs) formed from anthropogenic or biogenic gaseous precursors in the atmosphere substantially contribute to the ambient fine particulate matter [PM ≤2.5µm in aerodynamic diameter (PM2.5)] burden, which has been associated with adverse human health effects. However, there is only limited evidence on their differential toxicological impact. OBJECTIVES: We aimed to discriminate toxicological effects of aerosols generated by atmospheric aging on combustion soot particles (SPs) of gaseous biogenic (ß-pinene) or anthropogenic (naphthalene) precursors in two different lung cell models exposed at the air-liquid interface (ALI). METHODS: Mono- or cocultures of lung epithelial cells (A549) and endothelial cells (EA.hy926) were exposed at the ALI for 4 h to different aerosol concentrations of a photochemically aged mixture of primary combustion SP and ß-pinene (SOAßPIN-SP) or naphthalene (SOANAP-SP). The internally mixed soot/SOA particles were comprehensively characterized in terms of their physical and chemical properties. We conducted toxicity tests to determine cytotoxicity, intracellular oxidative stress, primary and secondary genotoxicity, as well as inflammatory and angiogenic effects. RESULTS: We observed considerable toxicity-related outcomes in cells treated with either SOA type. Greater adverse effects were measured for SOANAP-SP compared with SOAßPIN-SP in both cell models, whereas the nano-sized soot cores alone showed only minor effects. At the functional level, we found that SOANAP-SP augmented the secretion of malondialdehyde and interleukin-8 and may have induced the activation of endothelial cells in the coculture system. This activation was confirmed by comet assay, suggesting secondary genotoxicity and greater angiogenic potential. Chemical characterization of PM revealed distinct qualitative differences in the composition of the two secondary aerosol types. DISCUSSION: In this study using A549 and EA.hy926 cells exposed at ALI, SOA compounds had greater toxicity than primary SPs. Photochemical aging of naphthalene was associated with the formation of more oxidized, more aromatic SOAs with a higher oxidative potential and toxicity compared with ß-pinene. Thus, we conclude that the influence of atmospheric chemistry on the chemical PM composition plays a crucial role for the adverse health outcome of emissions. https://doi.org/10.1289/EHP9413.


Assuntos
Poluentes Atmosféricos , Fuligem , Aerossóis/análise , Idoso , Envelhecimento , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Células Endoteliais/química , Células Endoteliais/metabolismo , Humanos , Pulmão/metabolismo , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa